Cargando, por favor espere...
Por razones filosóficas el desarrollo matemático griego tuvo un carácter estático e idealizado, sin dar cuenta de los fenómenos dinámicos de la naturaleza. La corriente filosófica del Racionalismo en el Siglo XVII trajo como consecuencia una segunda revolución matemática, iniciada por René Descartes y luego continuada por Isaac Newton y Leibniz, generando herramientas para el estudio dinámico vinculado a fenómenos físicos. Este proceso en la era de la Ilustración, en los siglos XVII y XVIII, fue impulsor de una matemática asociada a la solución de problemas reales, pero este gran desarrollo se fue agotando, fue necesario que a mediados del Siglo XIX se crearan nuevas herramientas matemáticas y nuevos mundos geométricos, así nace la tercera revolución matemática con las ideas de Bernard Riemann, Evaristo Galois, Nicolai Lobachevski, etc. La corriente filosófica del romanticismo influyó para desarrollar una matemática más teórica, por el puro honor del espíritu humano, sentando las bases del análisis matemático, el álgebra abstracta, la geometría diferencial, la topología, los espacios abstractos, etc. Sin embargo, un poco de rigurosidad hacía falta, aparecen a principios del Siglo XX algunas paradojas, fue necesario una profunda revisión de los fundamentos de la matemática, con base en la naciente teoría de conjuntos. Resurgen nuevas corrientes de pensamiento filosófico: el logicismo, el intuicionismo y el formalismo. Estas escuelas comúnmente son llamadas corrientes clásicas de la filosofía de la matemática.
Esta batalla de pensamiento finalmente fue ganada por el formalismo de David Hilbert, constituyendo la cuarta revolución matemática, estableciendo una nueva epistemología matemática, concretamente: establecer un conocimiento sin bases filosóficas e históricas, sólo basada en establecer términos no definidos y axiomas como reglas de juego iniciales (no necesariamente evidentes) coherentes y consistentes, para luego continuar un proceso hipotético deductivo. Se puede decir que esta corriente, hoy llamada paradigma formalista, en la actualidad se halla presente en casi todos los matemáticos.
Como consecuencia de ello, el desarrollo de la investigación matemática ha sido espectacular y sin precedentes en la historia de esta ciencia; sin embargo, también ha causado una crisis en la enseñanza y aprendizaje de esta disciplina. El desarrollo ha sido tan espectacular, que abarcar todo el conocimiento actual de la matemática se ha vuelto imposible para cualquier ser humano y, por lo tanto, filosofar sobre los problemas de la matemática contemporánea es también imposible. Es decir, la llamada filosofía de la matemática clásica ha quedado impotente para generar nuevos avances, nuevas soluciones a problemas filosóficos de la matemática. Esto se agudiza dado que, en general, los filósofos que se interesan por los problemas filosóficos de la matemática no poseen formación matemática o científica; por lo tanto, sus reflexiones están carentes de algo indispensable, a mi juicio, del hacer de un matemático, que finalmente es quien crea e inventa este conocimiento.
Además, la formación académica formalista de los matemáticos (en general sin formación histórica y filosófica en la disciplina), ha estructurado su cerebro para pensar de manera rigurosa y formal, sin interés mayor de preguntarse sobre temas fundamentales como: ¿qué es la matemática? ¿Qué es un objeto matemático? ¿Qué naturaleza tiene este objeto? ¿Qué es un conjunto? ¿Cuáles son las herramientas conceptuales que permean en el trabajo matemático en general? ¿Cuál es la concepción filosófica del análisis, álgebra abstracta o la geometría en la matemática contemporánea? ¿Qué conexiones hay que establecer y qué nuevas herramientas hay que inventar para hacer una contribución realmente importante en la matemática actual?, ¿Cuáles son los problemas realmente relevantes en su línea de investigación? ¿Se está caminando para solucionar problemas relevantes o se publica sólo por satisfacer a la industria académica?, etc. Se podrían seguir estableciendo más conjeturas filosóficas, que desde el formalismo matemático son imposibles de resolver.
El arribo de la mariposa constituye uno de los mayores atractivos turísticos de la entidad, el cual genera empleo y recursos económicos.
Las ideas Kantianas empiezan a ser cuestionadas; uno de sus críticos más importantes fue Bertrand Russell, quien intentó demostrar que la aritmética no era parte de la intuición A priori del tiempo, como manifestaba Immanuel Kant.
En la primera mitad del Siglo XX aparece el fenómeno de la masificación de la educación matemática, periodo en que la matemática entra en la revolución del formalismo hilbertiano.
El Presidente López Obrador desea transformar al modelo educativo actual del CIDE en brazo ideológico de la 4ª T, pero se limita a imponer un director obsecuente sin precisar qué tipo de economía reemplazará al “neoclasisismo” y al “neoliberalismo”.
El inicio de la rigurosidad en el pensamiento matemático es obra del gran maestro Weierstrass, quien, entre otras atribuciones, estableció la existencia de una curva continua sin tangentes, sorprendiendo a los analistas de su época.
"Bard" tienen como propósito contribuir con la creatividad de los internautas, al tiempo en que les facilita la ejecución de diversas tareas.
El THC (presente en la marihuana y actúa sobre el sistema nervioso central) estimula la sobreproducción de dopamina, una hormona responsable del placer que se produce naturalmente ante acciones como comer o tener sexo.
Albert Einstein es el físico más importante del Siglo XX, sus ideas profundas han revolucionado las bases de la física newtoniana, dejando estupefactos a los grandes físicos de su época.
Leonard Euler aún de avanzada edad y ciego, continuó su producción a un ritmo acelerado; en 1770 publica otra de sus obras más sobresalientes Introducción al álgebra, pedagógicamente impecable.
Un sistema puede definirse como un conjunto de elementos o variables que interactúan de manera coherente. Estos elementos pueden ser de tipo económico, técnico, social o ecológico, y forman parte de una estructura compleja.
Sirva de ejemplo la vida de Bonaventura Francesco Cavalieri para que los jóvenes mexicanos decidan estudiar matemáticas y comprendan que es útil en la resolución de problemas reales.
La historia de esa constante comenzó desde que el hombre tuvo necesidad de construir pirámides con bases circulares y cilíndricas, como lo demuestran los papiros de Ahmes y Moscú.
El 8 de abril será la fecha clave y también será la primera vez que se intente volar un dispositivo en otro planeta.
Toda afirmación en matemática es siempre referida a un determinado sistema formal.
Las lombrices desempeñan un papel fundamental en la producción de granos; sin ellas no podríamos comer pan dulce ni esos deliciosos bolillos recién horneados o tortillas recién salidas del comal.
Chimalhuacán es el municipio más inseguro del EDOMEX
Los cuatro municipios más inseguros del Edomex son gobernados por Morena
Va Morena contra plataformas digitales; impulsa ley censura
Palestinos en la inanición; Gaza vive la peor crisis alimentaria desde octubre de 2023
Autorizan portación de armas a funcionarios de Pemex y CFE
Sonarán celulares en el Primer Simulacro Nacional 2025
Escrito por Dr. Esptiben Rojas Bernilla
Colaborador