Cargando, por favor espere...

¿Qué es la matemática filosófica? Parte I
El desarrollo de la investigación matemática ha sido tan espectacular, que abarcar todo el conocimiento actual de la matemática se ha vuelto imposible para cualquier ser humano.
Cargando...

El desarrollo del conocimiento humano siempre ha estado influenciado por las corrientes de pensamiento filosófico, el conocimiento matemático no ha sido la excepción. Incluso desde los inicios del pensamiento filosófico (VI a.C.), también se encuentra asociada al pensamiento matemático, por ejemplo, la concepción pitagórica de número. Fue Aristóteles quien estableció la primera epistemología matemática, estableciendo las definiciones, axiomas, postulados, teoremas etc., como elementos necesarios en el trabajo matemático, dando origen a la primera revolución matemática, en el año 300 a.C. con los Elementos de Euclides.

Por razones filosóficas el desarrollo matemático griego tuvo un carácter estático e idealizado, sin dar cuenta de los fenómenos dinámicos de la naturaleza. La corriente filosófica del Racionalismo en el Siglo XVII trajo como consecuencia una segunda revolución matemática, iniciada por René Descartes y luego continuada por Isaac Newton y Leibniz, generando herramientas para el estudio dinámico vinculado a fenómenos físicos. Este proceso en la era de la Ilustración, en los siglos XVII y XVIII, fue impulsor de una matemática asociada a la solución de problemas reales, pero este gran desarrollo se fue agotando, fue necesario que a mediados del Siglo XIX se crearan nuevas herramientas matemáticas y nuevos mundos geométricos, así nace la tercera revolución matemática con las ideas de Bernard Riemann, Evaristo Galois, Nicolai Lobachevski, etc. La corriente filosófica del romanticismo influyó para desarrollar una matemática más teórica, por el puro honor del espíritu humano, sentando las bases del análisis matemático, el álgebra abstracta, la geometría diferencial, la topología, los espacios abstractos, etc. Sin embargo, un poco de rigurosidad hacía falta, aparecen a principios del Siglo XX algunas paradojas, fue necesario una profunda revisión de los fundamentos de la matemática, con base en la naciente teoría de conjuntos. Resurgen nuevas corrientes de pensamiento filosófico: el logicismo, el intuicionismo y el formalismo. Estas escuelas comúnmente son llamadas corrientes clásicas de la filosofía de la matemática. 

Esta batalla de pensamiento finalmente fue ganada por el formalismo de David Hilbert, constituyendo la cuarta revolución matemática, estableciendo una nueva epistemología matemática, concretamente: establecer un conocimiento sin bases filosóficas e históricas, sólo basada en establecer términos no definidos y axiomas como reglas de juego iniciales (no necesariamente evidentes) coherentes y consistentes, para luego continuar un proceso hipotético deductivo. Se puede decir que esta corriente, hoy llamada paradigma formalista, en la actualidad se halla presente en casi todos los matemáticos.

Como consecuencia de ello, el desarrollo de la investigación matemática ha sido espectacular y sin precedentes en la historia de esta ciencia; sin embargo, también ha causado una crisis en la enseñanza y aprendizaje de esta disciplina. El desarrollo ha sido tan espectacular, que abarcar todo el conocimiento actual de la matemática se ha vuelto imposible para cualquier ser humano y, por lo tanto, filosofar sobre los problemas de la matemática contemporánea es también imposible. Es decir, la llamada filosofía de la matemática clásica ha quedado impotente para generar nuevos avances, nuevas soluciones a problemas filosóficos de la matemática. Esto se agudiza dado que, en general, los filósofos que se interesan por los problemas filosóficos de la matemática no poseen formación matemática o científica; por lo tanto, sus reflexiones están carentes de algo indispensable, a mi juicio, del hacer de un matemático, que finalmente es quien crea e inventa este conocimiento.

Además, la formación académica formalista de los matemáticos (en general sin formación histórica y filosófica en la disciplina), ha estructurado su cerebro para pensar de manera rigurosa y formal, sin interés mayor de preguntarse sobre temas fundamentales como: ¿qué es la matemática? ¿Qué es un objeto matemático? ¿Qué naturaleza tiene este objeto? ¿Qué es un conjunto? ¿Cuáles son las herramientas conceptuales que permean en el trabajo matemático en general? ¿Cuál es la concepción filosófica del análisis, álgebra abstracta o la geometría en la matemática contemporánea? ¿Qué conexiones hay que establecer y qué nuevas herramientas hay que inventar para hacer una contribución realmente importante en la matemática actual?, ¿Cuáles son los problemas realmente relevantes en su línea de investigación? ¿Se está caminando para solucionar problemas relevantes o se publica sólo por satisfacer a la industria académica?, etc. Se podrían seguir estableciendo más conjeturas filosóficas, que desde el formalismo matemático son imposibles de resolver.


Escrito por Dr. Esptiben Rojas Bernilla

Colaborador


Notas relacionadas

La matemática del Siglo XVIII se caracteriza por su falta de rigor, por carecer de un cuerpo teórico para hacer a las nuevas herramientas matemáticas más eficientes.

El mundo cambia, la gran honda cósmica se mueve con base en leyes, no en plegarias.

Muchas de las enfermedades “del mundo moderno” (cáncer, diabetes, hipertensión, asma, demencia) son producto de los “malos hábitos” alimenticios y falta de ejercicio.

Los problemas personales no afectaron su brillante carrera académica; su jornada incluía largas horas de concentración.

Es la era del “dominio humano sobre los procesos biológicos, químicos y geológicos de la Tierra”.

volviendo al ejemplo del futbol, las vacunas son el equivalente a jugar un partido amistoso a principio de temporada, solo nos preparan para los posibles escenarios de una “competencia real”.

Astrónomos encontraron señal de vida en lo alto de la atmósfera de Venus: indicios que puede haber extraños microbios viviendo en las nubes cargadas de ácido sulfúrico.

Un profundo conocimiento de la diversidad de climas y suelos ejerce una influencia positiva en la productividad de cultivos específicos, desde los campos de aguacate en Michoacán hasta los de agave para la producción de tequila en Jalisco.

"Al pueblo de los Emiratos Árabes Unidos, a las naciones árabes y musulmanas, anunciamos la llegada con éxito a la órbita de Marte. Alabado sea Dios".

Ingenuity dispone de dos cámaras, una en blanco y negro para la navegación y otra en color, que está orientada para tomar imágenes del terreno.

Los genes son los responsables de la conformación del genotipo

Los métodos proporcionados por Eudoxo y Arquímedes, hace más de dos mil años, son usados hoy para calcular áreas con cualquier tipo de curvas y volúmenes.

Un grupo de científicos reveló que el papiro narra la “vivificación de los gorriones”.

Este fenómeno se encuentra en el movimiento de los mares, en los chorros que salen de un grifo con suficiente velocidad.

Arquímedes es considerado el primer investigador en matemática e ingeniero. La obsesión por resolver problemas matemáticos de su época lo conducía a altos grados de concentración que, incluso, se olvidaba de comer, bañarse y de realizar otras tareas cotid