Cargando, por favor espere...
Para dar solución a sus necesidades prácticas, el hombre tuvo que perfeccionar los medios de trabajo, sus métodos de investigación y profundizar en los conocimientos sobre fenómenos concretos. Fue así como al calcular áreas de terrenos accidentados, volúmenes de objetos irregulares y organizar su tiempo durante el día para optimizar su quehacer diario, el hombre desarrolló una forma precisa de cálculo y medición conocido hoy como cálculo de infinitésimos o cantidades infinitamente pequeñas.
Los infinitésimos surgieron con la teoría atomista de Leucipo de Mileto (siglo V a. C.) y Demócrito de Abdera (460–370 a. C.) para dar respuesta al problema de las magnitudes continuas, consideradas en la antigüedad como conjunto de partículas infinitamente pequeñas denominadas átomos. Apoyándose en estas consideraciones atomistas, Zenón de Elea (490–430 a. C.), con sus más de 40 aporías, entre las que destacan La dicotomía de Aquiles y la tortuga, El corredor en el estadio y La flecha voladora, hizo ver a sus contemporáneos que era imposible caracterizar una magnitud continua como un conjunto de partículas infinitamente pequeñas.
Pero llegó Eudoxo de Cnido (390–337 a. C.), uno de los matemáticos más sobresalientes de la Academia de Platón, quien demostró que Zenón estaba en un error: que siempre es posible caracterizar una magnitud continua haciendo que algo sea tan pequeño como se quiera. Con este planteamiento, Eudoxo resolvió las aporías de Zenón, que habían surgido en el tratamiento de los procesos infinitos, y desarrolló un método geométrico de aproximación conocido como método por agotamiento, usado para hallar áreas de figuras curvilíneas, entre ellas el círculo. Para encontrar el área aproximada del círculo, Eudoxo calculó primero el área del polígono inscrito. Al agregarle más lados, se dio cuenta que el polígono se asemejaba más al círculo; con eso concluyó que si observaba el área del polígono, encontraría también el área del círculo.
La tarea, sin embargo, se abandonó durante un largo periodo y fue con Arquímedes de Siracusa (287–212 a. C.) cuando se retomó. Este genio, para calcular áreas de superficies curvas y volúmenes de sólidos, combinó el método por agotamiento con el de reducción al absurdo, el cual consiste en construir una contradicción usando la negación de lo que se quiere demostrar. El trabajo de Arquímedes consistió en calcular, mediante el método por agotamiento, el área de un polígono regular de 96 lados, en un círculo de radio uno, primero, y circunscrito después. Luego comparó las áreas de esos polígonos y observó que la diferencia entre ellas era muy pequeña, a tal grado que las áreas de cada uno podrían considerarse equivalentes. Arquímedes construyó una contradicción mediante la negación de dicha equivalencia y demostró efectivamente que el área del polígono inscrito era equivalente al área del polígono circunscrito, y que cada una de las áreas se aproximaba a la del círculo considerado. Se sabe que Arquímedes calculó el valor del número irracional π a 11 decimales cuando se aproximó al área de un círculo de radio uno.
Con todo y su genialidad, el más notable de los científicos de Siracusa no resolvió el problema en su totalidad. El área de los dos polígonos usados por él para encontrar el área del círculo radio uno, no cubría el área total de éste, pues quedaban espacios infinitamente pequeños que él no pudo cubrir.
No fue sino hasta 1635 cuando el matemático italiano Bonaventura Francesco Cavalieri (1598–1647), en su obra traducida y titulada Una nueva forma de desarrollar la geometría usando el indivisible continuo, retomó el método por agotamiento de Eudoxo y el de reducción al absurdo de Arquímedes, e incorporó a su obra la teoría infinitesimal como actualmente se estudia en las matemáticas superiores, incluyendo con ello el concepto formal del infinito y pequeñas cantidades geométricas de Kepler. Con la introducción del infinito en las matemáticas, Cavalieri logró con éxito encontrar el área del círculo. A partir de entonces, la medida de las longitudes y el cálculo de áreas y volúmenes comenzaron a calcularse mediante la suma de una infinidad de indivisibles, permitiendo al inglés Isaac Newton (1643–1727) y al alemán Gottfried Wilhelm Leibniz (164–1716), unificar y complementar el cálculo diferencial con el cálculo integral.
Alguna vez escuché decir que la matemática no es una ciencia al no someterse al método científico, pero en ciertos trabajos se ha exigido a los estudiantes utilizar el método científico, ¿cómo es posible? Aquí explico.
El desequilibrio hídrico ha dejado sin agua a casi 3 mil millones de personas alrededor del mundo
La irracionalidad ayuda al hombre a comprender la continuidad y la discontinuidad de la materia.
Sostener que el arte es un reflejo de la sociedad, así a secas, distorsiona y mutila el papel de la actividad artística y de los artistas. La práctica artística es, en realidad...
Los daños causados al planeta comienzan a pasarnos factura. Las tasas de deforestación han afectado gravemente las distintas funciones de los bosques, además, su papel como regulador del clima está siendo severamente afectado.
El profesor Godfrey Hardy fue muy famoso, entre otras aportaciones a la matemática, por su concepción ontológicamente neutra en la materia, que lo llevó a escribir uno de los textos más interesantes para entender el trabajo de un matemático.
¿Por qué las plantas generan frutos? Porque como todos los seres vivos, buscan perpetuarse en el mundo. El fruto es una adaptación exitosa de las plantas para lograr esta finalidad.
Solo es necesario que una fracción del hielo antártico se derrita para causar estragos en el nivel geológico en nuestro planeta. Un incremento del nivel del mar que supere los dos metros de altura pondría en peligro a 770 millones de personas.
La pandemia del Covid-19 es la primera advertencia de un cambio ecológico global al que nos acercamos peligrosamente.
Esencialmente el método filosófico propuesto por René Descartes tenía una inspiración matemática, a saber: No admitir nada absolutamente evidente.
Cuando se habla de entrenamiento deportivo y su dosificación en los atletas, entran en juego diversas variantes que influirán en resultados ya sea positivos o negativos.
Son uno de los pocos grupos totalmente originarios que aún existen en el mundo entero; persisten alrededor de seis mil 200 individuos. En las últimas décadas han enfrentado distintos episodios de despojo de sus bosques.
Además de generar beneficios importantes para los suelos, la materia orgánica contribuye al amortiguamiento de agentes contaminantes. Sin embargo, las actividades humanas han provocado que en el 42% de nuestro territorio los suelos estén casi inservibles.
Aunque la predicción del reconocido científico menciona específicamente a los Estados Unidos, los temas que reflexiona tienen alcance global.
Durante el gobierno de Napoleón, Francia vivió una época brillante para la ciencia, se hablaba del Imperio de las Ciencias.
FNERRR reactivará movilizaciones en Oaxaca
Hospitales y clínicas de Oaxaca van a paro por falta de insumos
Leer es una condición de clase
México sin soberanía energética y Pemex endeudada
Pemex se asocia con Carlos Slim
"Ser enemigo de Estados Unidos es peligroso, pero ser su amigo es fatal", responde China a EE. UU.
Escrito por Romeo Pérez
Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.