Cargando, por favor espere...

Los infinitésimos y su historia
Se sabe que Arquímedes calculó el valor del número irracional π a 11 decimales cuando se aproximó al área de un círculo de radio uno.
Cargando...

Para dar solución a sus necesidades prácticas, el hombre tuvo que perfeccionar los medios de trabajo, sus métodos de investigación y profundizar en los conocimientos sobre fenómenos concretos. Fue así como al calcular áreas de terrenos accidentados, volúmenes de objetos irregulares y organizar su tiempo durante el día para optimizar su quehacer diario, el hombre desarrolló una forma precisa de cálculo y medición conocido hoy como cálculo de infinitésimos o cantidades infinitamente pequeñas.

Los infinitésimos surgieron con la teoría atomista de Leucipo de Mileto (siglo V a. C.) y Demócrito de Abdera (460–370 a. C.) para dar respuesta al problema de las magnitudes continuas, consideradas en la antigüedad como conjunto de partículas infinitamente pequeñas denominadas átomos. Apoyándose en estas consideraciones atomistas, Zenón de Elea (490–430 a. C.), con sus más de 40 aporías, entre las que destacan La dicotomía de Aquiles y la tortuga, El corredor en el estadio y La flecha voladora, hizo ver a sus contemporáneos que era imposible caracterizar una magnitud continua como un conjunto de partículas infinitamente pequeñas.

Pero llegó Eudoxo de Cnido (390–337 a. C.), uno de los matemáticos más sobresalientes de la Academia de Platón, quien demostró que Zenón estaba en un error: que siempre es posible caracterizar una magnitud continua haciendo que algo sea tan pequeño como se quiera. Con este planteamiento, Eudoxo resolvió las aporías de Zenón, que habían surgido en el tratamiento de los procesos infinitos, y desarrolló un método geométrico de aproximación conocido como método por agotamiento, usado para hallar áreas de figuras curvilíneas, entre ellas el círculo. Para encontrar el área aproximada del círculo, Eudoxo calculó primero el área del polígono inscrito. Al agregarle más lados, se dio cuenta que el polígono se asemejaba más al círculo; con eso concluyó que si observaba el área del polígono, encontraría también el área del círculo.

La tarea, sin embargo, se abandonó durante un largo periodo y fue con Arquímedes de Siracusa (287–212 a. C.) cuando se retomó. Este genio, para calcular áreas de superficies curvas y volúmenes de sólidos, combinó el método por agotamiento con el de reducción al absurdo, el cual consiste en construir una contradicción usando la negación de lo que se quiere demostrar. El trabajo de Arquímedes consistió en calcular, mediante el método por agotamiento, el área de un polígono regular de 96 lados, en un círculo de radio uno, primero, y circunscrito después. Luego comparó las áreas de esos polígonos y observó que la diferencia entre ellas era muy pequeña, a tal grado que las áreas de cada uno podrían considerarse equivalentes. Arquímedes construyó una contradicción mediante la negación de dicha equivalencia y demostró efectivamente que el área del polígono inscrito era equivalente al área del polígono circunscrito, y que cada una de las áreas se aproximaba a la del círculo considerado. Se sabe que Arquímedes calculó el valor del número irracional π a 11 decimales cuando se aproximó al área de un círculo de radio uno.

Con todo y su genialidad, el más notable de los científicos de Siracusa no resolvió el problema en su totalidad. El área de los dos polígonos usados por él para encontrar el área del círculo radio uno, no cubría el área total de éste, pues quedaban espacios infinitamente pequeños que él no pudo cubrir.

No fue sino hasta 1635 cuando el matemático italiano Bonaventura Francesco Cavalieri (1598–1647), en su obra traducida y titulada Una nueva forma de desarrollar la geometría usando el indivisible continuo, retomó el método por agotamiento de Eudoxo y el de reducción al absurdo de Arquímedes, e incorporó a su obra la teoría infinitesimal como actualmente se estudia en las matemáticas superiores, incluyendo con ello el concepto formal del infinito y pequeñas cantidades geométricas de Kepler. Con la introducción del infinito en las matemáticas, Cavalieri logró con éxito encontrar el área del círculo. A partir de entonces, la medida de las longitudes y el cálculo de áreas y volúmenes comenzaron a calcularse mediante la suma de una infinidad de indivisibles, permitiendo al inglés Isaac Newton (1643–1727) y al alemán Gottfried Wilhelm Leibniz (164–1716), unificar y complementar el cálculo diferencial con el cálculo integral. 


Escrito por Romeo Pérez Ortiz

Doctor en Fisica y Matematicas por la Universidad Estatal de Lomonosov de Moscu, Rusia


Notas relacionadas

Internet Explorer se retiró este 15 de junio de la competencia de navegadores luego de 27 años de haberse creado como parte del paquete Windows 95.

Con una longitud de 11 kilómetros de largo y siete metros de alto, China tiene la autopista submarina más larga del mundo, denominada Taihu.

Marx incluyó en su obra El Capital las características de la agricultura capitalista, la cual extraía más nutrientes del suelo de los que le devolvía, dejando a las tierras infértiles.

La participación de las mujeres en el desarrollo de las matemáticas ha sido escasa, comparada con la de los hombres

El mundo cambia, la gran honda cósmica se mueve con base en leyes, no en plegarias.

Luego de haber agotado todas las vías para exigir legalidad, la comunidad del CIDE dio a conocer por medio de una publicación que cerrarán la carretera México Toluca en defensa de la institución.

Mientras el trabajo matemático tiene reglas, axiomas, y su libertad está en función de estar gobernado por sistemas formales; en el trabajo filosófico...

El pan y la sal comparten una historia íntimamente relacionada desde su descubrimiento y uso en la alimentación; la cultura los tiene como emblemas relevantes en la vida cotidiana de los pueblos más antiguos.

A pesar de todas las riquezas que posee África (y que aquí menciono), la gran mayoría de la población vive una situación muy deplorable, lo que representa una gran contradicción.

El mal manejo, la extracción ilegal y la mala información, así como los mitos y el desarrollo turístico, han llevado a pérdidas importantes en el número de poblaciones de la cacerolita de mar.

La imagen viral que vimos en redes sociales captada por el el telescopio espacial “James Webb” nos muestra cómo se veía una porción del universo hace cuatro mil 600 millones de años.

Monitorear la evolución del rendimiento deportivo de los atletas a lo largo de las fases de preparación para una competencia es un tema que ha tomado relevancia en los últimos años, sin embargo, no todos los deportistas tienen las herramientas necesarias para realizarla con eficacia.

El hábito tan frecuente de beber café ha traído consigo una gran polémica acerca de si es bueno o malo beber café. Ante esto, múltiples investigaciones se han centrado en responder tal cuestión

La IA sirve para que las empresas comerciales puedan manejar las conductas humanas sobre esa base de “éxito”.

Las consecuencias del calentamiento global antropogénico están ocurriendo con una rapidez mayor a la pronosticada por la comunidad científica.

Edición impresa

Editorial

El Gobierno y la clase empresarial


En este país, como en todos aquellos en que existe explotación capitalista, el Estado se halla al servicio de la clase dominante.

Síguenos en Facebook


Poesía

Sociedad anónima

Sociedad Anónima 1139