Cargando, por favor espere...

Jean D’Alembert: el matemático de la ilustración
Desde el punto de vista filosófico, D’Álembert era partidario de la unidad del saber, proponía el progreso de la humanidad a través del desarrollo de la ciencia, unificadas por una filosofía desprendida de los mitos y creencias transcendentales.
Cargando...

A mediados del Siglo XVIII, el régim m en político en Europa era el absolutismo monárquico por derecho divino, causando una profunda desigualdad entre las personas y clases sociales, como respuesta, a esta situación surgió un movimiento llamado Ilustración o Enciclopedismo, formado por burgueses, aristócratas, filósofos y economistas, quienes criticaban las instituciones existentes, proponiendo nuevos sistemas que dieran a las personas igualdad y bienestar. Filósofos como Montesquieu, Voltaire, Rousseau y Diderot fueron los principales ideólogos de este movimiento.

En Francia, un poderoso instrumento para estas nuevas ideas filosóficas fue la Enciclopedia (28 volúmenes) o Diccionario razonado de las ciencias, las artes y los oficios. Esta obra monumental también contenía ideas contra el régimen monárquico absoluto; por eso, en dos ocasiones fue prohibida por el gobierno, quien consideró que instigaba la rebelión contra Dios y el rey.

La parte matemática y filosófica de la Enciclopedia fue encargada a uno de los grandes matemáticos franceses de la época, Jean D’Álembert (1717–1783). D’Álembert nació en París y fue abandonado por su madre en las escaleras de una iglesia; tiempo después fue rescatado por su padre, un general de artillería, para darle una mejor educación. Estudió derecho y medicina, estudios que abandonó para seguir su pasión: la matemática. Por sus trabajos matemáticos a los 23 años logró ser miembro de la Académica de Ciencias de París.

En 1743, D’Álembert publicó una de sus más destacadas obras: Tratado de Dinámica, inventando el principio que hoy día lleva su nombre: En un sistema, las fuerzas internas de inercia son iguales y opuestas a las fuerzas que producen la aceleración. En 1747 usó este principio para establecer el Problema de la cuerda vibrante, modelado por la siguiente ecuación: , para el cual dio la solución: u=f(x+t)+g(x-t), donde f y g son funciones arbitrarias.

En 1752 D’Álembert llega a establecer lo que hoy conocemos como Ecuaciones de Cauchy – Riemann:  y  donde ∂u y ∂v son diferenciales

Escribe D’Álembert,  en 1761, Sobre los logaritmos de las cantidades negativas, entrando en disputa con Leonard Euler, que demuestra que D’Álembert estaba equivocado al considerar log(-1) = log(+1). Sin embargo, en su obra también estudia (a+bi)(p+qi) considerando (a+bi) como una variable, siendo el precursor de lo que hoy llamamos Cálculo de Variable Compleja.

Lo más polémico de las ideas matemáticas de D’Álembert, fue su concepción del infinito, el cual consideraba como el límite de cantidades finitas, en el sentido que puede ser igual a un número tan grande como se quiera. Llegando a afirmar que: “Una cantidad es algo a nada; si es algo, aún no se ha desvanecido; y si no es nada, ya se ha desvanecido literalmente. La suposición que hay un estado intermedio entre éstas dos es una quimera”. Lo que conduce a rechazar las cantidades evanescentes de Newton y el concepto de diferencial de Leibniz. Esta idea de D’Álembert terminó de sucumbir ante el prestigio académico de Newton y Leibniz.

Desde el punto de vista filosófico, D’Álembert era partidario de la unidad del saber, fundamentado en una especie de síntesis entre racionalismo y empirismo. Además, proponía el progreso de la humanidad a través del desarrollo de la ciencia, unificadas por una filosofía desprendida de los mitos y creencias transcendentales.

D’Álembert poseía un carácter polémico y desafiante que lo llevó a entablar constantes disputas con filósofos de la época y con matemáticos como Leonard Euler y Daniel Bernoulli. Sin embargo, D’Álembert fue un gran escritor. En una ocasión escribió: “La imaginación de un matemático creador no dista mucho de la de un poeta inventivo. Entre todos los grandes hombre de la antigüedad, Arquímedes bien puede ser quien más merece ser situado junto a Homero”

D’Álembert murió en 1772, a los 64 años, y fue enterrado muy modestamente, solo acompañado por su amigo y filósofo Nicolás Condorcet (1743-1794).


Escrito por Dr. Esptiben Rojas Bernilla

Colaborador


Notas relacionadas

Este gran matemático y astrónomo de la antigüedad fue capaz de medir la distancia de la Tierra a la Luna con una precisión importante.

La 4T presume que sus políticas están encaminadas a alcanzar la soberanía alimentaria, sin embargo, se han eliminado los apoyos de comercialización y programas que aseguraban un ingreso para los campesinos.

Por primera vez en la historia, médicos trasplantaron un riñón genéticamente modificado de un cerdo para un ser humano vivo.

Los hallazgos sugieren un movimiento continuo hacia el oeste a lo largo de millones de años, lo que ha llevado a un refinamiento de la teoría de la tectónica de placas.

Que la energía cinética (antes llamada fuerza viva) representa el cambio del movimiento mecánico en otra forma de movimiento.

En los últimos 400 mil años, la concentración de CO2 atmosférico varió de 180 a 300 ppm

La educación universitaria es un paso indispensable para el desarrollo científico y tecnológico.

La vida de Mendel es un ejemplo clásico de perseverancia. Aunque al principio sus observaciones no tuvieron relevancia para la comunidad científica, biólogos y botánicos llegaron a sus mismas conclusiones décadas después de su muerte.

Si te gustan las matemáticas y te interesa conocer qué características debe tener un sistema de axiomas, aquí te detallo. Son tres: compatibilidad, independencia y completitud (idealmente).

En la novela Los crímenes de Oxford, su autor, el doctor en Matemáticas y escritor argentino Guillermo Martínez, es un ejemplo de convergencia de estas dos áreas aparentemente disímiles: matemáticas y literatura.

Se ha demostrado que los microplásticos causan daños graves a las células humanas, daños que van desde reacciones alérgicas hasta provocar la muerte celular. No solo perjudican el medio ambiente, sino también al hombre.

Los moquitos tienen un sentido del olfato sumamente fino.

La proteína es un macronutriente indispensable para el crecimiento y el mantenimiento de órganos y músculos en el cuerpo de los animales.

Dotado de un extraordinario talento para estructurar conexiones, el alemán Alexander Grothendiek amplió las fronteras de la matemática contemporánea.

La realidad es más compleja de lo que la ciencia sabe de ella y nos damos cuenta.