Cargando, por favor espere...
En general, los objetos matemáticos son ficciones o invenciones humanas que están sujetas o gobernadas por sistemas formales. En teoría, si inventamos un sistema formal del contenido de El Ingenioso Hidalgo Don Quijote de La Mancha, lo matematizamos; por lo tanto, lo convertimos en un objeto matemático. Esto explica, por ejemplo, la existencia de estudios que intentan matematizar la poesía.
El conjunto, como célula básica de casi todo el conocimiento matemático, es una ficción que solo es posible inventar dentro de un sistema formal que garantice la existencia de ellos; por ejemplo, el sistema axiomático de Zermelo Franckel. Aquí hay que aclarar que existen versiones en las que el conjunto vacío se crea mediante un axioma (generando un conflicto con el discurso matemático escolar de pluralidad).
Debo manifestar que este axioma no me satisface, prefiero aceptar como axioma la existencia del conjunto inductivo (ver mi libro: Una axiomatización de la Teoría de Conjuntos), que resulta más plausible y no genera ruptura cognitiva. Con este axioma, y usando el axioma de especificación, se define un conjunto sin elementos (por ejemplo, con la propiedad , para luego probar que este conjunto está contenido en cualquier otro y, finalmente, probar que este conjunto es único, dando nacimiento a un objeto matemático que llamamos conjunto vacío.
Desde el punto de vista del conocimiento matemático formal, está plenamente justificada la existencia del conjunto vacío, el cual no necesita de la interpretación conceptual de pluralidad. Sin embargo, desde el discurso matemático escolar se reconoce a la pluralidad como característica esencial de los conjuntos, causando una ruptura cognitiva en los jóvenes. Es importante mencionar que la transmisión del conocimiento matemático no necesariamente es isovalente con el discurso matemático escolar, por razones pedagógicas y de madurez matemática de los jóvenes. Esto es razonablemente comprensible, puesto que hasta George Cantor, considerado el padre de la Teoría de Conjuntos decía: “Entendemos por conjunto cualquier reunión de un todo M de determinados objetos bien distinguidos m de nuestra intuición o nuestro pensamiento”. Esta idea la vemos reflejada en la obra Elementos de Euclides (S. III. a.C.), pasando por Bernard Bolzano, Bernhard Riemann y de otros connotados matemáticos. Incluso ellos no concebían un conjunto sin elementos. La concepción formal del conjunto vacío es obra de los formalistas, para construir al cero como número natural, además de darle sentido a algunas construcciones matemáticas que no poseen elementos, por ejemplo, el conjunto solución de algunas ecuaciones.
Para el formalista (por lo menos para Hilbert) la pertenencia es también una relación entre dos conjuntos, sin definición precisa, en la que no interviene la intuición típica del discurso matemático escolar, todo debe reducirse a un modelo formal, donde interesan las propiedades de esta relación y no su interpretación intuitiva. Para Hilbert, un libro de geometría no debería contener algún gráfico, esa misma escuela formal siguió el grupo Bourbaki, es cuestión de ver sus libros, por ejemplo, Dieudonne, para observar que no existen gráficos o dibujos, a lo más un esquema que no forma parte del contenido, todo el fundamento solo se basa en el sistema formal adoptado. Por supuesto que el discurso matemático escolar hace fuertemente uso de la intuición y todo elemento (dibujos, gráficos, tecnología etc.) pedagógico para el buen entendimiento de las técnicas matemáticas.
Es oportuno mencionar que no compartimos esta visión hilbertiana; desde el trabajo matemático y de la creación matemática, estos pictogramas son esenciales para las interpretaciones conceptuales de los mismos, sin ellos es probable no se pudieran visualizar muchas conexiones o generar nuevos objetos matemáticos. Además, el formalismo no da cuenta de lo dinámico de los objetos matemáticos, su plasticidad, su adaptabilidad y su estratificación dentro de un continuo temporal, es por ello que hablamos de un Ficcionismo Formal de Tránsito.
Finalmente, desde el formalismo matemático, la respuesta a ¿por qué el conjunto vacío es un conjunto? depende del sistema formal adoptado: se decreta su existencia por medio de un axioma específico; la otra opción sería, por medio de aceptar otro axioma (por ejemplo, el axioma del conjunto inductivo) demostrar que existe como conjunto. Por supuesto que desde el punto de vista filosófico es cuestionable, desde la mera existencia de los axiomas para crear objetos matemáticos y así construir esta ciencia. Sin embargo, desde el discurso matemático escolar, no hay respuesta, o su posible respuesta es contradictoria. Debemos entender que son dos mundos distintos, el matemático por un lado y el pedagógico por otro, el problema está en la transposición didáctica del objeto conjunto vacío. No siempre lo que se enseña en la escuela es exactamente igual al conocimiento matemático.
Por ello, ahora como antes, es de vital importancia que los científicos dejen de ser una élite que atesora el conocimiento, y que devuelvan éste al pueblo. La ciencia se nutre en el pueblo.
En México hay aproximadamente dos mil especies de abejas nativas. A diferencia de las melíferas, que viven en colonias (colmenas) con su reina y obreras, la mayoría de las nativas son solitarias.
Alguna vez escuché decir que la matemática no es una ciencia al no someterse al método científico, pero en ciertos trabajos se ha exigido a los estudiantes utilizar el método científico, ¿cómo es posible? Aquí explico.
El comportamiento migratorio de los tiburones de Groenlandia aún es un misterio para la comunidad científica.
La Secretaría de Salud ya “estudia a los contactos del caso y se atiende al paciente. El diagnóstico aún no es definitivo".
Heine logró demostrar que si una serie trigonométrica converge a una función continua en un intervalo dado, entonces la serie es única.
Lejos de eliminar los productos “exóticos”, el Presidente debería impulsar y asegurar el acceso a ellos para todos los mexicanos.
"Hemos visto con nuestros ojos y sentido bajo nuestros pies cómo muere el Ártico", explicó en declaraciones a la televisión pública ARD el jefe de la expedición, Markus Rex.
El matemático fue el primero en usar las funciones de variable compleja en la solución de problemas aritméticos, iniciando una fructífera área de investigación llamada: Teoría Analítica de Números.
Para que el deportista cumpla sus objetivos físicos debe considerar varias variables. Aquí explicamos la hipertrofia muscular, puesto que la población que realiza deporte casi siempre busca una buena imagen física.
El profesor Godfrey Hardy fue muy famoso, entre otras aportaciones a la matemática, por su concepción ontológicamente neutra en la materia, que lo llevó a escribir uno de los textos más interesantes para entender el trabajo de un matemático.
Toda la matemática clásica, desde la época de los griegos, se construyó evitando considerar un infinito actual, aunque de manera subliminal siempre se ha usado. Aquí te explico.
Los nuevos ambientes activan en nuestro organismo la producción de dopamina, sustancia que promueve el aprendizaje asociativo.
El término “transgénico” significa la inserción de un gen extraño en un organismo, acción propia de la tecnología biológica que consiste en transferir un fragmento del ADN de una célula a otra.
Crowdstrike sufrió una interrupción global que afectó a aeropuertos, bancos y otras empresas a nivel mundial.
¡No andaba muerto, estaba en reunión! Ricardo Ordóñez recibe atención en Veracruz
Nuevo embajador de China trabajará en la construcción de la multipolaridad con México
Movimientos populares rechazan retiro de estatuas de Fidel y el Che en CDMX
Por juegos de azar, detienen a banda de estafadores que operaba en Iztapalapa
Cada hora roban seis autos asegurados en México
Difunden video de presuntos homicidas de colaboradores de Clara Brugada
Escrito por Dr. Esptiben Rojas Bernilla
Colaborador