Cargando, por favor espere...

La historia del número π
La historia de esa constante comenzó desde que el hombre tuvo necesidad de construir pirámides con bases circulares y cilíndricas, como lo demuestran los papiros de Ahmes y Moscú.
Cargando...

El número π, que en griego significa periferia o perímetro, es una constante que representa el área de un círculo de radio uno. Su valor se calcula tomando el perímetro de una circunferencia y dividiéndolo por su diámetro. Así fue como, inicialmente, los antiguos matemáticos comenzaron a calcular el área de un círculo hasta encontrar la fórmula que hoy conocemos como π r2

Varios siglos tuvieron que transcurrir para que el hombre precisara el área del círculo de radio uno. La historia de esa constante comenzó desde que el hombre tuvo necesidad de construir pirámides con bases circulares y cilíndricas, como lo demuestran los papiros de Ahmes y Moscú.

En efecto, la noción acerca de aquel maravilloso número nació con las culturas egipcia y sumeria; luego, su conocimiento se trasladó a la cultura griega, con la que alcanzó su más alto desarrollo, con las aportaciones geométricas de los matemáticos Eudoxo de Cnido y Arquímedes de Siracusa. Sin embargo, los métodos por agotamiento y reducción al absurdo, usados por aquellos científicos, aunque muy superiores a los usados por sus antecesores, les ayudó a aproximarse solo a 11 decimales del valor de π.

Fue necesario, pues, crear una nueva herramienta matemática que fortaleciera el método por agotamiento o aproximación usado por los matemáticos griegos. Varios autores coinciden en que el método, que consistía en calcular el área de una figura cualquiera por medio de aproximaciones y particiones, era la base del cálculo infinitesimal, pero incipiente; que para resolver el problema planteado, los matemáticos debían proporcionar nuevas herramientas matemáticas, como las relacionadas con lo infinitamente grande e infinitamente pequeño.

No fue sino hasta mediados del Siglo XVII, cuando tal cálculo infinitesimal se fortaleció con los científicos Torricelli y Cavalieri, quienes introdujeron el concepto formal del infinito. Ahora, con el conocimiento de lo infinitamente pequeño y las particiones infinitas, Fermat y Descartes lograron crear el cálculo diferencial, que fue unificado posteriormente con el calculo integral creado por Arquímedes. La síntesis de estas dos herramientas matemáticas, a través del Teorema Fundamental del Cálculo, dio origen al cálculo diferencial e integral, una herramienta muy poderosa que vino a resolver el problema del área bajo la curva y que resolvió, en definitiva, el problema del área del círculo, no solo de radio uno, sino de cualquier radio.

Aunque Leibniz y Newton fueron los que sintetizaron el cálculo diferencial con el cálculo integral, no fueron ellos quienes dieron solución al área del círculo de radio uno. De hecho, sus resultados acerca del numero π ni siquiera estaban relacionados con las integrales, sino con series de fracciones continuas, productos infinitos y series infinitas que contribuyeron, desde luego, a aportar más decimales al valor de π. Fue el matemático alemán Bernhard Riemann (1826–1866) quien aclaró el problema del área del círculo de radio uno. El método usado por este matemático se basó, en primer lugar, en particiones de un intervalo. En segundo lugar, levantó una altura para cada partición del intervalo hasta tocar la curva, a la que le quería calcular el área. Finalmente, sumó el área de cada rectángulo infinitamente delgado que había construido. Es decir, sumó la diferencia de las particiones multiplicadas por la altura, haciendo que esa diferencia fuera cada vez más pequeña hasta convertirse en cero. Este método, conocido como la Suma de Riemann, lo llevó a encontrar el valor exacto del área bajo la curva y, como consecuencia, el área exacta del círculo de radio uno.

Como ya se dio cuenta, amigo lector, la historia enseña al mismo maestro y a su alumno el significado de cada fórmula matemática. La historia comunica al hombre el avance de esta ciencia en cada época y cómo sus métodos van perfeccionándose con el desarrollo de la sociedad. En el caso particular de la historia del número π, el cálculo infinitesimal le enseñó al hombre que calcular todos sus decimales es imposible. Ni las supercomputadoras más sofisticadas del mundo han descubierto los valores de este número. La cantidad más grande de dígitos encontrados hasta este momento es 13 billones de decimales. Sin embargo, con el método matemático, el hombre ha demostrado que esa constante es un número irracional (véase Cálculo infinitesimal de Michael Spivak, págs. 547–462) y que tiene una infinidad de decimales que no se repiten.


Escrito por Romeo Pérez

Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.


Notas relacionadas

El desarrollo de la sociedad planteó nuevos retos que propiciaron la creación de nuevas herramientas, que ayudaron a encontrar el área exacta de un círculo de radio uno.

El sustento del conocimiento matemático se desarrolló en la antigua Grecia; uno de los filósofos que contribuyó a su desarrollo fue Aristóteles, quien planteó las leyes básicas del pensamiento humano a fin de obtener deducciones válidas.

Los investigadores desarrollaron un híbrido de dos especies de chayotes silvestres mexicanos y descubrieron en el extracto crudo del genotipo de chayote mexicano el agente anticancerigeno.

A través de milenios hemos inventado más símbolos, creado más conceptos y conexiones conceptuales; pero en esencia el lenguaje matemático es parcial, no puede describir sentimientos, emociones, alegrías ni la poesía.

En teoría, si inventamos un sistema formal del contenido de Don Quijote de La Mancha, lo matematizamos; por lo tanto, lo convertimos en un objeto matemático.

Por primera vez en el mundo, científicos de Siberia lograron curar del cáncer a gatos y perros a través de una terapia basada en la captura de neutrones por el boro.

Durante más de dos mil años el postulado de las paralelas, que formaba parte del cimiento de la geometría euclidiana, se mantuvo firme.

AMLO olvida que el desarrollo económico de un país está directamente relacionado con las inversiones en la investigación y la producción de ciencia y tecnología.

Otras mujeres matemáticas también fueron importantes en la antigua Grecia; por ejemplo Aspacia de Alejandría (470-410 a. C.), pareja de Pericles.

Las matemáticas, por muy abstractas que sean, tienen una base real.

El hombre antiguo estuvo “muy cerca” de hallar el área del círculo. Sin embargo, como nos enseñaron en “las buenas escuelas”, el área del círculo con radio uno es un número irracional con un número infinito de dígitos que no son periódicos.

La variante ómicron del coronavirus ya se ha detectado en más de 40 países desde que fuera identificada por primera vez en Sudáfrica a finales de noviembre pasado.

Aunque las ideas iniciales fueron concebidas por Bernhard Riemann y Richard Dedekind, se reconoce que el matemático que consolidó y sentó las bases para la axiomatización de la teoría de conjuntos fue el ruso George Cantor.

La MIA-F1 reconoce afectaciones de gran magnitud a los ecosistemas de los primeros tres tramos.

No es raro encontrar bosques enfermos: aquéllos con hojas amarillas o cafés, troncos llenos de grumos resinosos, follaje manchado y, en los casos más graves, la presencia masiva de plantas o insectos parásitos.