Cargando, por favor espere...

Tlaixaxiliztli
La irracionalidad de un número
La irracionalidad ayuda al hombre a comprender la continuidad y la discontinuidad de la materia.


En el mundo de los humanos hay quienes son irracionales y quienes son racionales. No se sabe si el conjunto de los primeros es mayor que el de los segundos, pero una cosa sí sabemos: el rumbo que está tomando la sociedad actual es tan irracional como la sociedad misma. Algo parecido sucede en la matemática, particularmente en el mundo de los números reales. Éstos, como nos enseñaron en la escuela secundaria, se dividen en racionales (los que pueden expresarse en fracciones) e irracionales (los que tienen una infinidad de decimales que no son periódicos).

Ambos términos, racional e irracional, son usados hoy con tanta facilidad, que no nos detenemos a pensar en su significado y su origen. Se sabe que el hombre antiguo comenzó a expresar la longitud de un segmento recto mediante fracciones, es decir, a través de magnitudes medibles o conmensurables. Pero pronto notó la existencia de segmentos que eran inconmensurables (es decir, segmentos no medibles). Uno de esos hombres fue el filósofo y matemático Pitágoras de Samos, quien planteó magníficamente la relación que existe entre la música y las matemáticas y su desempeño en el cultivo del saber. Este genio de la antigua Grecia descubrió la inconmensurabilidad de la diagonal de un cuadrado de lado uno, cuya longitud es igual a la raíz cuadrada de dos.

Hoy, este resultado es fácil de encontrar usando el famoso teorema de Pitágoras, pero en aquellos tiempos provocó una crisis entre la geometría y la aritmética; porque en esa época, ésta consistía solo en la teoría de la proporcionalidad, la cual solamente se aplicaba a magnitudes conmensurables. Fue así como nacieron los números racionales e irracionales, que ahora forman el conjunto de los números reales y que, de niños, nos enseñaron con los saltos de ranitas y sapitos.

El otro número, quizás más antiguo que el descubierto por Pitágoras, fue el número π, estudiado y desarrollado por la cultura sumeria, china y egipcia. Esta constante representó un avance en la construcción de pirámides y tumbas con bases circulares, esféricas y cilíndricas, objetos que requerían área y volumen.

La aparición del número π y la raíz cuadrada de dos originó una serie de números hermanos y amigos conocidos hoy como la raíz cuadrada de 3, 5, 7, 8, 10 11, etc., todos, desde luego, irracionales. Pero no solo eso, en la lista de los irracionales apareció también la constante e, reconocida y estudiada por el matemático escocés John Napier y divulgada después por el suizo Leonhard Euler, el matemático más prolífico de todos los tiempos.

El conjunto de los números arriba mencionados vino a completar la recta real. Es decir, la aparición de esos números fue necesaria para que la matemática tuviera una base sólida. Hoy, el estudiante no puede continuar sus estudios superiores sin pasar por los números reales, pues éstos son la base para comprender el análisis matemático y otras ramas de la matemática.

Pero llegar a la comprensión de la irracionalidad, no fue tarea fácil para el hombre. Tuvo que entender, primero, el concepto del infinito. Por ejemplo, en el Siglo XIX, el desarrollo de la matemática insinuaba que los números racionales e irracionales no tenían el mismo tamaño, aunque ambos fueran infinitos. Tuvo que venir Georg Cantor para comparar los tamaños de esos números con la siguiente ley: dos conjuntos M y N son equivalentes, si es posible ponerlos mediante una función mediante la cual se compruebe que a cada elemento de uno de ellos le corresponda uno y solo un elemento del otro. Con esta herramienta, Cantor demostró que el tamaño de los irracionales es más grande que el de los racionales y que es el único conjunto que completa a los racionales para formar la recta real. 

El resultado de Cantor sobre la irracionalidad de un número vino a enseñar al hombre que la naturaleza y el universo son más complejos de lo que parecen. Esa irracionalidad vino a demostrar que el tiempo es continuo y que el movimiento realizado por cualquier animal viviente en la naturaleza es continuo. En síntesis, la irracionalidad ayuda al hombre a comprender la continuidad y la discontinuidad de la materia.


Escrito por Romeo Pérez

Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.


Notas relacionadas

El hacer matemático en el Siglo XX

Los modos del pensamiento matemático influyen en su hacer, el Siglo XX ha sido testigo de al menos dos formas de este hacer, con marcada influencia ideológica.

Mueren al año 90 mil mexicanos por cáncer

Los especialistas indican que en todo el país se detectan alrededor de 195 mil casos de cáncer al año, los cuales tienen una tasa de mortalidad del 46%.

sh.jpg

“Estamos ante la presencia del gobierno que intenta ver como accidentes, lo que más bien han sido tragedias provocadas por la ausencia de mantenimiento”, denunció Andrés Atayde, presidente del PAN.

corona.jpg

La Secretaría de Salud ya “estudia a los contactos del caso y se atiende al paciente. El diagnóstico aún no es definitivo".

Crear imágenes por medio de IA pone en riesgo la privacidad del usuario

El usuario otorga permisos amplios para usar su imagen, lo que facilita la creación de contenido Deepfake, capaz de imitar su apariencia y voz con gran precisión.

¿Es posible tener un envejecimiento saludable?

Desde el punto de vista biológico, el envejecimiento humano es la acumulación de diversos daños celulares y moleculares a lo largo del tiempo, lo que lleva a un descenso gradual de las capacidades físicas y mentales.

lu.jpg

“Caffarelli tiene una intuición fantástica, es sencillamente notable… me costó mucho seguirle el ritmo. De algún modo, ve inmediatamente cosas que los otros no ven”, afirmó el afamado matemático Louis Nirenberg.

Promueven tendencias de emprendimiento 2024

La tecnología hace posible que las ventas en línea lleguen a más personas, sin importar donde se encuentren; por lo que cada vez más usuarios de la red realizan compras a través de internet.

El naturalista, el matemático y la medición del mundo

La novela La Medición del Mundo, del filósofo y escritor alemán Daniel Kehlmann, se trata de una obra muy documentada, apasionante y amena, cuyo estilo está claramente influido por el realismo mágico.

conacyt-4.jpg

Para alcanzar independencia política se requiere independencia económica, y esto exige soberanía científica y tecnológica; pero a los países ricos conviene que los pobres no lo consigan.

clionautas895.jpg

¿Qué pueden esperar las masas de los partidarios de un sistema que las excluye de la propia historia?

mo.jpg

Pareciera contraintuitivo que alguien haga su vida al lado de grandes montañas que sacan humo y fuego, sin embargo, ese material que sacan por sus chimeneas hace que los suelos que los rodean sean fértiles...

Científicos relacionan derretimiento de glaciares con aumento de riesgo de terremotos

Enjambres de terremotos se incrementan a finales del verano, tras la filtración del agua de deshielo, y disminuyen en primavera.

vacunacovid-19.jpg

El FHI recomienda no obstante guardar la vacuna de J&J por si fuera necesario usarla en una situación en la que el contagio aumente de forma dramática en Noruega.

China.png

China espera convertirse en la tercera nación en lograr esta hazaña, que requiere un operativo extremadamente complejo.