Cargando, por favor espere...

La conceptualización de la matemática (II de II)
Si te gustan las matemáticas y te interesa conocer qué características debe tener un sistema de axiomas, aquí te detallo. Son tres: compatibilidad, independencia y completitud (idealmente).
Cargando...

Una demostración matemática es un conjunto de procedimientos o argumentaciones lógicas que permiten establecer fehacientemente la veracidad de las afirmaciones matemáticas.

Un sistema de axiomas debe tener tres características esenciales: compatibilidad, independencia y completitud (idealmente).

 

1. Compatibilidad de los axiomas

Se dice que un sistema de axiomas es compatible cuando se ha probado que, operando lógicamente con ellos, no es posible llegar a demostrar que dos proposiciones contradictorias sean verdaderas. El problema de la compatibilidad o de la no contradicción de un sistema de axiomas es el problema lógico por excelencia, pues la existencia de una contradicción en una teoría la invalida completamente.

Para los formalistas (Hilbert y su escuela) la compatibilidad tiene un contenido fundamental, basta haberla demostrado para un sistema de axiomas para poder afirmar la existencia de los objetos matemáticos que el sistema de axiomas define, es decir, ser compatible y existir son para ellos sinónimos. Por ejemplo, basta definir rigurosamente el concepto de número natural, de acuerdo a un sistema de axiomas para que exista.

El problema de la compatibilidad ha sido atacado con pleno éxito en casi todas las teorías matemáticas; así, por ejemplo, Hilbert demuestra, de una manera acabada, la no contradicción de la geometría aceptando la no contradicción de la teoría de los números reales; la aritmetización del análisis reduce también su no contradicción a la de los números reales; la no contradicción de éstos se reduce a su vez a la de los números naturales y de la teoría de conjuntos, disciplina que desempeña por esto un papel central en la matemática.

 

2. Independencia de un sistema de axiomas

Un sistema axiomático, con los siguientes axiomas A1, A2, ...An, es llamado independiente cuando se demuestra la imposibilidad de qué uno de estos axiomas pueda ser demostrado usando los axiomas restantes. Por ejemplo, en la Geometría Euclidiana no es posible demostrar el Axioma V (Postulado de las Paralelas), usando los Axiomas I, II, III, IV.

Para probar la independencia de uno de los axiomas, por ejemplo, A1, basta probar que es compatible el sistema formado por los demás axiomas y la negación de A1, puesto que, si esto se demostrara, resultaría que A1 no puede ser deducido de los otros, ya que al mismo tiempo se aceptaría su negación. Para efectuar esto se construyen disciplinas artificiales compatibles, las cuales son modelos que satisfacen estos sistemas de axiomas.

La historia de la matemática nos da un notable ejemplo que prueba la importancia del concepto de independencia de los sistemas de acción más: durante más de 20 siglos, los matemáticos se esforzaron infructuosamente en demostrar el Axioma V de Euclides, o Postulado de las Paralelas, hasta que Gauss, Lobachevski, Bolyai y Riemann plantearon y resolvieron el problema de la independencia de este postulado, creando las geometrías no euclidianas, las cuales contienen los mismos postulados de la Geometría Euclidiana, excepto el V, que se reemplaza por su negación, generando un nuevo sistema axiomático.

 

3. Saturación o completitud de un sistema de axiomas

Esta característica de un sistema axiomático, responde a la siguiente pregunta: ¿En una teoría matemática, toda proposición formulada en los términos de la teoría es necesaria mente demostrable o refutable?

Para un sistema de axiomas saturado o completo en el sentido anteriormente indicado, la respuesta es afirmativa; es decir, si existiera una proposición que no fuera demostrable ni refutable podría ser tomada como axioma independiente. Para nuestra sorpresa, Kurt Gödel demostró, en 1948, que no existen sistemas axiomáticos completos, para ver detalles de este controvertido resultado y sus alcances vea Una axiomatización de la teoría de conjuntos, de Esptiben Rojas.


Escrito por Dr. Esptiben Rojas Bernilla

Colaborador


Notas relacionadas

En nuestro país, el uso indiscriminado de fertilizantes químicos en la actividad agrícola se ha vuelto muy importante debido al empobrecimiento de los suelos.

La luminiscencia se encuentra, entre otro organismos, en estrellas de mar, tiburones y los dinoflagelados que, al emitir luz, hacen que el mar se llene de vida con olas brillantes, proyectando luz a lo largo de las costas.

La palabra “hidroponia” deriva del griego hydro (agua) y ponos (trabajo), significa “trabajo en agua”.

Monitorear la evolución del rendimiento deportivo de los atletas a lo largo de las fases de preparación para una competencia es un tema que ha tomado relevancia en los últimos años, sin embargo, no todos los deportistas tienen las herramientas necesarias para realizarla con eficacia.

Las siete mil 700 millones de personas que hay en la Tierra, aunado al actual modelo de vida consumista y desenfrenado, aceleran las condiciones de cambio climático que estamos enfrentando, como el calor y el frío.

La tenacidad en su trabajo le acompañó hasta una edad muy avanzada.

El satélite Jinan-1, de 23 kg, y su estación de 100 kg, son más pequeños y económicos que el Micius de 600 kg, usado en 2017.

Sirva de ejemplo la vida de Bonaventura Francesco Cavalieri para que los jóvenes mexicanos decidan estudiar matemáticas y comprendan que es útil en la resolución de problemas reales.

Estamos entrando en una crisis mundial de salud que, de no atenderse adecuada y prontamente, podría dirigirnos a una época en la que las personas morirán por infecciones microbianas.

El ChatGPT funciona como un programa que responde preguntas, genera texto y sostiene charlas, simulando una conversación real entre personas. Es muy útil, sin embargo, también tiene algunas limitaciones.

"Bard" tienen como propósito contribuir con la creatividad de los internautas, al tiempo en que les facilita la ejecución de diversas tareas.

Fermat nunca publicó un artículo matemático, todos sus aportes eran mediante cartas personales, sin embargo sus conjeturas fueron importantes para el desarrollo matemático.

El pueblo demanda salud, obra de 1951, es una de las pinturas que Diego Rivera plasmó que, además de centrarse en temas sociales y políticos, también se hizo alusión a la ciencia.

Se sabe que Arquímedes calculó el valor del número irracional π a 11 decimales cuando se aproximó al área de un círculo de radio uno.

Ante el descenso de temperaturas, los seres humanos se las han ingeniado para no pasar frío y continuar con sus actividades normales, pero qué pasa con los animales, ¿cómo sobreviven a las temperaturas bajas extremas? Te cuento.