Cargando, por favor espere...

La conceptualización de la matemática (II de II)
Si te gustan las matemáticas y te interesa conocer qué características debe tener un sistema de axiomas, aquí te detallo. Son tres: compatibilidad, independencia y completitud (idealmente).
Cargando...

Una demostración matemática es un conjunto de procedimientos o argumentaciones lógicas que permiten establecer fehacientemente la veracidad de las afirmaciones matemáticas.

Un sistema de axiomas debe tener tres características esenciales: compatibilidad, independencia y completitud (idealmente).

 

1. Compatibilidad de los axiomas

Se dice que un sistema de axiomas es compatible cuando se ha probado que, operando lógicamente con ellos, no es posible llegar a demostrar que dos proposiciones contradictorias sean verdaderas. El problema de la compatibilidad o de la no contradicción de un sistema de axiomas es el problema lógico por excelencia, pues la existencia de una contradicción en una teoría la invalida completamente.

Para los formalistas (Hilbert y su escuela) la compatibilidad tiene un contenido fundamental, basta haberla demostrado para un sistema de axiomas para poder afirmar la existencia de los objetos matemáticos que el sistema de axiomas define, es decir, ser compatible y existir son para ellos sinónimos. Por ejemplo, basta definir rigurosamente el concepto de número natural, de acuerdo a un sistema de axiomas para que exista.

El problema de la compatibilidad ha sido atacado con pleno éxito en casi todas las teorías matemáticas; así, por ejemplo, Hilbert demuestra, de una manera acabada, la no contradicción de la geometría aceptando la no contradicción de la teoría de los números reales; la aritmetización del análisis reduce también su no contradicción a la de los números reales; la no contradicción de éstos se reduce a su vez a la de los números naturales y de la teoría de conjuntos, disciplina que desempeña por esto un papel central en la matemática.

 

2. Independencia de un sistema de axiomas

Un sistema axiomático, con los siguientes axiomas A1, A2, ...An, es llamado independiente cuando se demuestra la imposibilidad de qué uno de estos axiomas pueda ser demostrado usando los axiomas restantes. Por ejemplo, en la Geometría Euclidiana no es posible demostrar el Axioma V (Postulado de las Paralelas), usando los Axiomas I, II, III, IV.

Para probar la independencia de uno de los axiomas, por ejemplo, A1, basta probar que es compatible el sistema formado por los demás axiomas y la negación de A1, puesto que, si esto se demostrara, resultaría que A1 no puede ser deducido de los otros, ya que al mismo tiempo se aceptaría su negación. Para efectuar esto se construyen disciplinas artificiales compatibles, las cuales son modelos que satisfacen estos sistemas de axiomas.

La historia de la matemática nos da un notable ejemplo que prueba la importancia del concepto de independencia de los sistemas de acción más: durante más de 20 siglos, los matemáticos se esforzaron infructuosamente en demostrar el Axioma V de Euclides, o Postulado de las Paralelas, hasta que Gauss, Lobachevski, Bolyai y Riemann plantearon y resolvieron el problema de la independencia de este postulado, creando las geometrías no euclidianas, las cuales contienen los mismos postulados de la Geometría Euclidiana, excepto el V, que se reemplaza por su negación, generando un nuevo sistema axiomático.

 

3. Saturación o completitud de un sistema de axiomas

Esta característica de un sistema axiomático, responde a la siguiente pregunta: ¿En una teoría matemática, toda proposición formulada en los términos de la teoría es necesaria mente demostrable o refutable?

Para un sistema de axiomas saturado o completo en el sentido anteriormente indicado, la respuesta es afirmativa; es decir, si existiera una proposición que no fuera demostrable ni refutable podría ser tomada como axioma independiente. Para nuestra sorpresa, Kurt Gödel demostró, en 1948, que no existen sistemas axiomáticos completos, para ver detalles de este controvertido resultado y sus alcances vea Una axiomatización de la teoría de conjuntos, de Esptiben Rojas.


Escrito por Dr. Esptiben Rojas Bernilla

Colaborador


Notas relacionadas

El sistema CRISPR/Cas9 es considerado como el método más simple, versátil y preciso de manipulación genética.

Carl Jacobi desarrolló una intensa labor de investigación, su obra científica publicada por la Academia de Ciencias de Berlín asciende a ocho volúmenes.

Los humanos, a diferencia de los animales, son enseñados en familias, escuelas y grupos humanos insertos en sociedades cambiantes en términos estructurales e ideológicos.

La pobreza y la marginación social son la principal causa del incremento de enfermedades relacionadas con la nutrición.

El hallazgo sucedió en mayo de 2022 por el paleontólogo Damien Boschetto, quien observó en el borde de un acantilado derrumbado un hueso expuesto.

Julio Verne nació en Nantes, Francia, en 1828. Fue un brillante escritor y divulgador de la ciencia.

El tránsito hacia una matemática filosófica exige iniciar una quinta revolución matemática; para ello, el estudio de la historia desde el hacer de un matemático es fundamental.

La participación de las mujeres en el desarrollo de las matemáticas ha sido escasa, comparada con la de los hombres

Hasta el último centavo del dinero destinado a fomentar el trabajo científico es arrancado para satisfacer los intereses más oscuros de la “Cuarta Transformación” (4T).

En nuestra época, los alimentos se conservan mejor en refrigeración o en envases.

El mundo generó más electricidad a partir de combustibles fósiles en 2020 que en 2015, año en que 190 países firmaron el Acuerdo de París y se comprometieron a reducir la emisión de gases de efecto invernadero.

Estableció formalmente la continuidad de la recta real, definiendo un número real por medio de un dispositivo llamado cortadura.

Este gran matemático e inventor, dedicó sus últimos años a la docencia en la Biblioteca de Alejandría, sus obras están escritas al estilo de notas de clase de distintos temas: mecánica, geometría, óptica.

Entre los hallazgos se identificaron decenas de moluscos, tres peces y un camarón, además de una enigmática criatura que desconcertó a los científicos.

Groenlandia es un país autónomo que, paradójicamente, pertenece al reino de Dinamarca y controla su política exterior y monetaria.