Cargando, por favor espere...

Sobre la intuición en la matemática
Las ideas Kantianas empiezan a ser cuestionadas; uno de sus críticos más importantes fue Bertrand Russell, quien intentó demostrar que la aritmética no era parte de la intuición A priori del tiempo, como manifestaba Immanuel Kant.
Cargando...

Immanuel Kant (1724-1804) considerado precursor del idealismo y uno de los filósofos más influyentes de la filosofía universal en su obra Crítica de la razón pura, considera: “sea cual fuera el modo como un conocimiento se relacione con los objetos, aquel en que la relación es inmediata y para el que todo pensamiento sirve de medio se llama intuición”. La intuición es esencial para todo conocimiento, en particular para el conocimiento matemático.

Para Kant existen dos formas de conocimiento, uno llamado A priori, independiente de la experiencia, y otro conocimiento llamado A posteriori, que sí depende de la experiencia.

Immanuel Kant establece que la intuición tiene dos vertientes; una empírica –la parte A posteriori– en la que se reconocen los colores, sonidos, olores etc., y otra es la parte pura –A priori–, independiente de la experiencia, que nos permite percibir el espacio y el tiempo como entes independientes. Con la concepción de espacio somos capaces de representar las cosas que se hallan fuera de nosotros mismos y con el tiempo, mediante la mente que se observa a sí misma.

Para Immanuel Kant, la matemática es producto de la intuición no sobre el pensamiento, mediante esta intuición A posteriori percibimos la geometría y las propiedades de las figuras; la aritmética es percibida por nuestra intuición del espacio y tiempo y son estructuras A priori separadas, que nos permiten interpretar los fenómenos físicos.

Estas ideas de Immanuel Kant fueron muy influyentes, puesto que justificaban, aparentemente, la geometría euclidiana –la única que se conocía en la época de Kant– como un conocimiento A priori (independiente de la experiencia); de otro lado, la física newtoniana, que se basa en esta geometría, considera que todo fenómeno físico está determinado en un cierto espacio y tiempo (como entes separados). Por supuesto, con el advenimiento de las geometrías no euclidianas y luego con la teoría de la relatividad, estas ideas de Immanuel Kant han sido severamente cuestionadas.

En la propia matemática se han suscitado hechos que ponen en cuestionamiento el papel de la intuición; crear conocimiento matemático haciendo uso de la intuición, sin una demostración fehaciente, es actualmente algo impensable. Por ejemplo: aunque la afirmación “todo polígono cerrado que no se cruza a sí mismo divide el plano en dos partes separadas” sea intuitivamente evidente, hoy no es suficiente para aceptarla como conocimiento matemático; es necesaria una demostración formal. La misma experiencia física, incluso, puede contener errores o inexactitudes en el espacio y el tiempo; por ejemplo, cuando observamos que un disco que ocupa un espacio determinado –según nuestra intuición–. Mediante la observación o experiencia física no hay forma certera de saber si la longitud del disco es un número racional o irracional. Aunque afinemos nuestras técnicas de medición, la incerteza siempre estará presente. El problema radica que se intenta hacer isovalente la medida (longitud) de un objeto material con una ficción humana, que son los números.

Las ideas Kantianas empiezan a ser cuestionadas; uno de sus críticos más importantes fue Bertrand Russell, quien intentó demostrar que la aritmética se reducía a la lógica y que, por lo tanto, no era parte de la intuición A priori del tiempo, como manifestaba Immanuel Kant.

Los principales argumentos para demostrar que la intuición no es de fiar en matemática se fueron dando desde la segunda mitad del Siglo XIX; algunos ejemplos al respecto son los siguientes:

Intuitivamente es imposible imaginar un punto que se mueva y que en cada punto no tenga una velocidad definida. Este hecho fue desmentido, primero, por Bernhard Bolzano, filósofo, teólogo y matemático austriaco; después, en 1861, el alemán Karl Weierstrass, encontró un ejemplo en el que una curva no tiene por qué tener una tangente en cada punto. Este hecho matemático se demuestra en los actuales cursos de cálculo de una variable.

Con este resultado matemático se inició una revisión profunda de los fundamentos del cálculo. Los pioneros en este programa fueron Agustín Cauchy (1789-1857), Bernhard Bolzano (1781-1848), Karl Weierstrass (1815 – 1897), George Cantor (1845 – 1818) y Richard Dedekind (1831-1916).


Escrito por Dr. Esptiben Rojas Bernilla

Colaborador


Notas relacionadas

“No creo que quienes nunca lo escucharon puedan darse cuenta de lo magnífica que fue la enseñanza de Hermite; desbordante de entusiasmo por la ciencia, que parecía cobrar vida en su voz y cuya belleza nunca dejaba de comunicarnos".

El ser humano ha entendido las diferentes formas de vida a través de la observación, distinguiendo las similitudes y diferencias de los organismos.

El arribo de la mariposa constituye uno de los mayores atractivos turísticos de la entidad, el cual genera empleo y recursos económicos.

En lo que va de 2019 México ha registrado 74 mil 277 casos de dengue, cifra que lo ubica en el cuarto lugar de América Latina, solo después de Brasil (un millón 958 mil 31), Nicaragua (94 mil 513) y Colombia (84 mil 644).

La pobreza y la marginación social son la principal causa del incremento de enfermedades relacionadas con la nutrición.

El comportamiento migratorio de los tiburones de Groenlandia aún es un misterio para la comunidad científica.

Hay quien dice que algo o está vivo o está muerto; sin embargo, todo lo que empieza a vivir comienza a morir al mismo tiempo y todo lo inerte es germen de la vida, porque al final, la vida también es materia...

La sonda Mars Express halló “inmensos” depósitos de 3.7 kilómetros de espesor, ubicados bajo el suelo del ecuador de Marte, estructuras que sugieren la presencia de hielo.

Explicaron que la levitación magnética sucede cuando un objeto es suspendido en el aire.

El fenómeno astronómico tendrá lugar la noche del día de hoy jueves 13 de marzo alrededor de las 23:00 horas, alcanzando su máximo a las 00:26 horas del viernes 14.

Y es al mismo tiempo un retrato fiel de las sociedades en las que rige el neoliberalismo.

Los modos del pensamiento matemático influyen en su hacer, el Siglo XX ha sido testigo de al menos dos formas de este hacer, con marcada influencia ideológica.

El estudio sugiere que los avances científicos están diseñados para monitorear a personas, lo que podría beneficiar a la industria de la vigilancia.

Para mejorar el rendimiento de los atletas, debemos contemplar en nuestro trabajo deportivo el desarrollo de los conceptos y habilidades que explico en este artículo.

Fueron 5,504 especies previamente desconocidas de virus las que se identificaron, entre ellas, al 'Taraviricota', que podría ser el eslabón perdido en la evolución de los virus ARN.