Cargando, por favor espere...
Immanuel Kant (1724-1804) considerado precursor del idealismo y uno de los filósofos más influyentes de la filosofía universal en su obra Crítica de la razón pura, considera: “sea cual fuera el modo como un conocimiento se relacione con los objetos, aquel en que la relación es inmediata y para el que todo pensamiento sirve de medio se llama intuición”. La intuición es esencial para todo conocimiento, en particular para el conocimiento matemático.
Para Kant existen dos formas de conocimiento, uno llamado A priori, independiente de la experiencia, y otro conocimiento llamado A posteriori, que sí depende de la experiencia.
Immanuel Kant establece que la intuición tiene dos vertientes; una empírica –la parte A posteriori– en la que se reconocen los colores, sonidos, olores etc., y otra es la parte pura –A priori–, independiente de la experiencia, que nos permite percibir el espacio y el tiempo como entes independientes. Con la concepción de espacio somos capaces de representar las cosas que se hallan fuera de nosotros mismos y con el tiempo, mediante la mente que se observa a sí misma.
Para Immanuel Kant, la matemática es producto de la intuición no sobre el pensamiento, mediante esta intuición A posteriori percibimos la geometría y las propiedades de las figuras; la aritmética es percibida por nuestra intuición del espacio y tiempo y son estructuras A priori separadas, que nos permiten interpretar los fenómenos físicos.
Estas ideas de Immanuel Kant fueron muy influyentes, puesto que justificaban, aparentemente, la geometría euclidiana –la única que se conocía en la época de Kant– como un conocimiento A priori (independiente de la experiencia); de otro lado, la física newtoniana, que se basa en esta geometría, considera que todo fenómeno físico está determinado en un cierto espacio y tiempo (como entes separados). Por supuesto, con el advenimiento de las geometrías no euclidianas y luego con la teoría de la relatividad, estas ideas de Immanuel Kant han sido severamente cuestionadas.
En la propia matemática se han suscitado hechos que ponen en cuestionamiento el papel de la intuición; crear conocimiento matemático haciendo uso de la intuición, sin una demostración fehaciente, es actualmente algo impensable. Por ejemplo: aunque la afirmación “todo polígono cerrado que no se cruza a sí mismo divide el plano en dos partes separadas” sea intuitivamente evidente, hoy no es suficiente para aceptarla como conocimiento matemático; es necesaria una demostración formal. La misma experiencia física, incluso, puede contener errores o inexactitudes en el espacio y el tiempo; por ejemplo, cuando observamos que un disco que ocupa un espacio determinado –según nuestra intuición–. Mediante la observación o experiencia física no hay forma certera de saber si la longitud del disco es un número racional o irracional. Aunque afinemos nuestras técnicas de medición, la incerteza siempre estará presente. El problema radica que se intenta hacer isovalente la medida (longitud) de un objeto material con una ficción humana, que son los números.
Las ideas Kantianas empiezan a ser cuestionadas; uno de sus críticos más importantes fue Bertrand Russell, quien intentó demostrar que la aritmética se reducía a la lógica y que, por lo tanto, no era parte de la intuición A priori del tiempo, como manifestaba Immanuel Kant.
Los principales argumentos para demostrar que la intuición no es de fiar en matemática se fueron dando desde la segunda mitad del Siglo XIX; algunos ejemplos al respecto son los siguientes:
Intuitivamente es imposible imaginar un punto que se mueva y que en cada punto no tenga una velocidad definida. Este hecho fue desmentido, primero, por Bernhard Bolzano, filósofo, teólogo y matemático austriaco; después, en 1861, el alemán Karl Weierstrass, encontró un ejemplo en el que una curva no tiene por qué tener una tangente en cada punto. Este hecho matemático se demuestra en los actuales cursos de cálculo de una variable.
Con este resultado matemático se inició una revisión profunda de los fundamentos del cálculo. Los pioneros en este programa fueron Agustín Cauchy (1789-1857), Bernhard Bolzano (1781-1848), Karl Weierstrass (1815 – 1897), George Cantor (1845 – 1818) y Richard Dedekind (1831-1916).
Evariste Galois fue uno de los grandes genios de la humanidad y el matemático más joven de la historia matemática.
El hombre antiguo estuvo “muy cerca” de hallar el área del círculo. Sin embargo, como nos enseñaron en “las buenas escuelas”, el área del círculo con radio uno es un número irracional con un número infinito de dígitos que no son periódicos.
Si existen o no está sujeto a lo que concebimos como realidad, misma que es relativa, existe una realidad capturada por nuestros sentidos y una realidad inventada que sólo existe conceptualmente en la mente humana.
Las guerras biológicas permiten combatir a los enemigos sin confrontarse físicamente y han sido practicadas a lo largo de la historia. Los primeros usos de agentes biológicos se remontan a tres mil 500 años.
Este 14 de octubre ocurrirá un eclipse anular de sol, mismo que no se veía desde 1984. Para apreciarlo mejor, el IPN regalará más de 2 mil 500 lentes certificados en dos lugares. Te decimos dónde.
Se trata de una fábrica de generación de datos, cuyo propósito es ofrecer estos datos a las empresas que desarrollan modelos de Inteligencia Artificial .
Este explorador, pionero en su tipo, saltará de áreas iluminadas por el sol a cráteres en sombra para realizar análisis detallados.
El usuario otorga permisos amplios para usar su imagen, lo que facilita la creación de contenido Deepfake, capaz de imitar su apariencia y voz con gran precisión.
El ser humano tiene la capacidad de obtener e interpretar la información que obtiene de su medio ambiente para generar una respuesta, en forma de movimiento.
La MIA-F1 reconoce afectaciones de gran magnitud a los ecosistemas de los primeros tres tramos.
¿Alguna vez te has preguntado cómo es que podemos caminar, correr, pensar, sentir o platicar con otros? De todo eso se encargan las neuronas, su función es importantísima, aquí te cuento porqué y cómo funcionan.
El Siglo XXI es de la comunicación matemática, espero que en el futuro se sumen una mayor cantidad de divulgadores y difusores del conocimiento matemático, así la contribución para nuestra sociedad será enorme, entre sus muchos beneficios, porque mejorará la educación ciudadana.
Para reducir la acumulación del plástico, científicos de la Universidad de Singapur estudian al gusano Zophobas Atratus, reconocido por su capacidad de consumir y digerir este material.
El aporte matemático de Arthur Cayley es impresionante e innovador, sus ideas visionarias han contribuido a desarrollar la matemática moderna.
El método obtenido por el discípulo de Platón dio nacimiento formal al cálculo infinitesimal e influyó significativamente en los matemáticos posteriores a Eudoxo.
Cultura narco: reflejo estructural de un fenómeno sistémico
Fallece Teresa González Murillo, integrante del Colectivo Luz de Esperanza Jalisco
Llevará a México hasta 30 años atender rezago en infraestructura escolar
Hacienda desafía estimaciones pesimistas: espera crecimiento de hasta 2.3% en 2025
Cambia el rumbo de la educación en México
Suspenden solicitudes de acceso a la información
Escrito por Dr. Esptiben Rojas Bernilla
Colaborador