Cargando, por favor espere...
Immanuel Kant (1724-1804) considerado precursor del idealismo y uno de los filósofos más influyentes de la filosofía universal en su obra Crítica de la razón pura, considera: “sea cual fuera el modo como un conocimiento se relacione con los objetos, aquel en que la relación es inmediata y para el que todo pensamiento sirve de medio se llama intuición”. La intuición es esencial para todo conocimiento, en particular para el conocimiento matemático.
Para Kant existen dos formas de conocimiento, uno llamado A priori, independiente de la experiencia, y otro conocimiento llamado A posteriori, que sí depende de la experiencia.
Immanuel Kant establece que la intuición tiene dos vertientes; una empírica –la parte A posteriori– en la que se reconocen los colores, sonidos, olores etc., y otra es la parte pura –A priori–, independiente de la experiencia, que nos permite percibir el espacio y el tiempo como entes independientes. Con la concepción de espacio somos capaces de representar las cosas que se hallan fuera de nosotros mismos y con el tiempo, mediante la mente que se observa a sí misma.
Para Immanuel Kant, la matemática es producto de la intuición no sobre el pensamiento, mediante esta intuición A posteriori percibimos la geometría y las propiedades de las figuras; la aritmética es percibida por nuestra intuición del espacio y tiempo y son estructuras A priori separadas, que nos permiten interpretar los fenómenos físicos.
Estas ideas de Immanuel Kant fueron muy influyentes, puesto que justificaban, aparentemente, la geometría euclidiana –la única que se conocía en la época de Kant– como un conocimiento A priori (independiente de la experiencia); de otro lado, la física newtoniana, que se basa en esta geometría, considera que todo fenómeno físico está determinado en un cierto espacio y tiempo (como entes separados). Por supuesto, con el advenimiento de las geometrías no euclidianas y luego con la teoría de la relatividad, estas ideas de Immanuel Kant han sido severamente cuestionadas.
En la propia matemática se han suscitado hechos que ponen en cuestionamiento el papel de la intuición; crear conocimiento matemático haciendo uso de la intuición, sin una demostración fehaciente, es actualmente algo impensable. Por ejemplo: aunque la afirmación “todo polígono cerrado que no se cruza a sí mismo divide el plano en dos partes separadas” sea intuitivamente evidente, hoy no es suficiente para aceptarla como conocimiento matemático; es necesaria una demostración formal. La misma experiencia física, incluso, puede contener errores o inexactitudes en el espacio y el tiempo; por ejemplo, cuando observamos que un disco que ocupa un espacio determinado –según nuestra intuición–. Mediante la observación o experiencia física no hay forma certera de saber si la longitud del disco es un número racional o irracional. Aunque afinemos nuestras técnicas de medición, la incerteza siempre estará presente. El problema radica que se intenta hacer isovalente la medida (longitud) de un objeto material con una ficción humana, que son los números.
Las ideas Kantianas empiezan a ser cuestionadas; uno de sus críticos más importantes fue Bertrand Russell, quien intentó demostrar que la aritmética se reducía a la lógica y que, por lo tanto, no era parte de la intuición A priori del tiempo, como manifestaba Immanuel Kant.
Los principales argumentos para demostrar que la intuición no es de fiar en matemática se fueron dando desde la segunda mitad del Siglo XIX; algunos ejemplos al respecto son los siguientes:
Intuitivamente es imposible imaginar un punto que se mueva y que en cada punto no tenga una velocidad definida. Este hecho fue desmentido, primero, por Bernhard Bolzano, filósofo, teólogo y matemático austriaco; después, en 1861, el alemán Karl Weierstrass, encontró un ejemplo en el que una curva no tiene por qué tener una tangente en cada punto. Este hecho matemático se demuestra en los actuales cursos de cálculo de una variable.
Con este resultado matemático se inició una revisión profunda de los fundamentos del cálculo. Los pioneros en este programa fueron Agustín Cauchy (1789-1857), Bernhard Bolzano (1781-1848), Karl Weierstrass (1815 – 1897), George Cantor (1845 – 1818) y Richard Dedekind (1831-1916).
El inicio de la rigurosidad en el pensamiento matemático es obra del gran maestro Weierstrass, quien, entre otras atribuciones, estableció la existencia de una curva continua sin tangentes, sorprendiendo a los analistas de su época.
El matemático que opera y crea los objetos que la matemática estudia, si puede tener compromiso con la realidad, éste lo conduce a un proceso de establecer isovalencias entre los problemas reales y los objetos matemáticos.
Estos datos se obtienen de las observaciones que realiza la Conagua en las estaciones climatológicas.
El THC (presente en la marihuana y actúa sobre el sistema nervioso central) estimula la sobreproducción de dopamina, una hormona responsable del placer que se produce naturalmente ante acciones como comer o tener sexo.
La sonda Mars Express halló “inmensos” depósitos de 3.7 kilómetros de espesor, ubicados bajo el suelo del ecuador de Marte, estructuras que sugieren la presencia de hielo.
La variante ómicron del coronavirus ya se ha detectado en más de 40 países desde que fuera identificada por primera vez en Sudáfrica a finales de noviembre pasado.
Además de generar beneficios importantes para los suelos, la materia orgánica contribuye al amortiguamiento de agentes contaminantes. Sin embargo, las actividades humanas han provocado que en el 42% de nuestro territorio los suelos estén casi inservibles.
Si existen o no está sujeto a lo que concebimos como realidad, misma que es relativa, existe una realidad capturada por nuestros sentidos y una realidad inventada que sólo existe conceptualmente en la mente humana.
El comportamiento migratorio de los tiburones de Groenlandia aún es un misterio para la comunidad científica.
Por la relación comercial que tiene México con Estados Unidos, el 53.85 por ciento del café que se exporta de nuestro país tiene como destino Estados Unidos.
Desde el punto de vista biológico, el envejecimiento humano es la acumulación de diversos daños celulares y moleculares a lo largo del tiempo, lo que lleva a un descenso gradual de las capacidades físicas y mentales.
El grupo, compuesto por 34 estudiantes de las carreras de Autotrónica, Mecatrónica y Electrónica Industrial, visitan la NASA.
Se observaron más microplásticos en los polvos atmosféricos cerca de los centros industriales, comerciales y urbanos como: Tlalnepantla, Iztapalapa y La Merced.
El matemático fue el primero en usar las funciones de variable compleja en la solución de problemas aritméticos, iniciando una fructífera área de investigación llamada: Teoría Analítica de Números.
Marx no fue un economista cualquiera, fue un verdadero científico dispuesto a sumergirse en los complejos andamiajes de las moléculas, las ecuaciones, el metabolismo de materia y energía para validar o rectificar sus teorías sobre economía.
Irán desmiente a Trump: “No hay acuerdo de alto el fuego”
Artistas internacionales participarán en festival cultural en Tecomatlán, Puebla
‘Flossie’, el siguiente ciclón, se acerca a México
Sheinbaum elimina Unidad de Maestros que abrió AMLO con inversión millonaria
Irán confirma alto al fuego con Israel
En Puebla la libertad de expresión bajo asedio
Escrito por Dr. Esptiben Rojas Bernilla
Colaborador