Cargando, por favor espere...

Sobre la intuición en la matemática
Las ideas Kantianas empiezan a ser cuestionadas; uno de sus críticos más importantes fue Bertrand Russell, quien intentó demostrar que la aritmética no era parte de la intuición A priori del tiempo, como manifestaba Immanuel Kant.
Cargando...

Immanuel Kant (1724-1804) considerado precursor del idealismo y uno de los filósofos más influyentes de la filosofía universal en su obra Crítica de la razón pura, considera: “sea cual fuera el modo como un conocimiento se relacione con los objetos, aquel en que la relación es inmediata y para el que todo pensamiento sirve de medio se llama intuición”. La intuición es esencial para todo conocimiento, en particular para el conocimiento matemático.

Para Kant existen dos formas de conocimiento, uno llamado A priori, independiente de la experiencia, y otro conocimiento llamado A posteriori, que sí depende de la experiencia.

Immanuel Kant establece que la intuición tiene dos vertientes; una empírica –la parte A posteriori– en la que se reconocen los colores, sonidos, olores etc., y otra es la parte pura –A priori–, independiente de la experiencia, que nos permite percibir el espacio y el tiempo como entes independientes. Con la concepción de espacio somos capaces de representar las cosas que se hallan fuera de nosotros mismos y con el tiempo, mediante la mente que se observa a sí misma.

Para Immanuel Kant, la matemática es producto de la intuición no sobre el pensamiento, mediante esta intuición A posteriori percibimos la geometría y las propiedades de las figuras; la aritmética es percibida por nuestra intuición del espacio y tiempo y son estructuras A priori separadas, que nos permiten interpretar los fenómenos físicos.

Estas ideas de Immanuel Kant fueron muy influyentes, puesto que justificaban, aparentemente, la geometría euclidiana –la única que se conocía en la época de Kant– como un conocimiento A priori (independiente de la experiencia); de otro lado, la física newtoniana, que se basa en esta geometría, considera que todo fenómeno físico está determinado en un cierto espacio y tiempo (como entes separados). Por supuesto, con el advenimiento de las geometrías no euclidianas y luego con la teoría de la relatividad, estas ideas de Immanuel Kant han sido severamente cuestionadas.

En la propia matemática se han suscitado hechos que ponen en cuestionamiento el papel de la intuición; crear conocimiento matemático haciendo uso de la intuición, sin una demostración fehaciente, es actualmente algo impensable. Por ejemplo: aunque la afirmación “todo polígono cerrado que no se cruza a sí mismo divide el plano en dos partes separadas” sea intuitivamente evidente, hoy no es suficiente para aceptarla como conocimiento matemático; es necesaria una demostración formal. La misma experiencia física, incluso, puede contener errores o inexactitudes en el espacio y el tiempo; por ejemplo, cuando observamos que un disco que ocupa un espacio determinado –según nuestra intuición–. Mediante la observación o experiencia física no hay forma certera de saber si la longitud del disco es un número racional o irracional. Aunque afinemos nuestras técnicas de medición, la incerteza siempre estará presente. El problema radica que se intenta hacer isovalente la medida (longitud) de un objeto material con una ficción humana, que son los números.

Las ideas Kantianas empiezan a ser cuestionadas; uno de sus críticos más importantes fue Bertrand Russell, quien intentó demostrar que la aritmética se reducía a la lógica y que, por lo tanto, no era parte de la intuición A priori del tiempo, como manifestaba Immanuel Kant.

Los principales argumentos para demostrar que la intuición no es de fiar en matemática se fueron dando desde la segunda mitad del Siglo XIX; algunos ejemplos al respecto son los siguientes:

Intuitivamente es imposible imaginar un punto que se mueva y que en cada punto no tenga una velocidad definida. Este hecho fue desmentido, primero, por Bernhard Bolzano, filósofo, teólogo y matemático austriaco; después, en 1861, el alemán Karl Weierstrass, encontró un ejemplo en el que una curva no tiene por qué tener una tangente en cada punto. Este hecho matemático se demuestra en los actuales cursos de cálculo de una variable.

Con este resultado matemático se inició una revisión profunda de los fundamentos del cálculo. Los pioneros en este programa fueron Agustín Cauchy (1789-1857), Bernhard Bolzano (1781-1848), Karl Weierstrass (1815 – 1897), George Cantor (1845 – 1818) y Richard Dedekind (1831-1916).


Escrito por Dr. Esptiben Rojas Bernilla

Colaborador


Notas relacionadas

Este fenómeno se encuentra en el movimiento de los mares, en los chorros que salen de un grifo con suficiente velocidad.

El Meteorito de Allende abrió “una ventana para entender el origen del Sistema Solar” y junto a otro célebre meteorito “mexicano” de hace 66 millones de años en el área submarina de Chicxulub, ha aportado importantes conocimientos científicos sobre la historia de la Tierra.

Su domesticación ha traído casi cien variedades de esta especie, dentro de las que se pueden encontrar plantas con las típicas hojas color verde y escarlata.

El impacto social de los Beatles ha sido sumamente importante; en materia musical y de producción de sonido desataron una auténtica revolución, y ahora la inteligencia artificial nos acerca a lo que pudo haber sido.

México cerró su participación en el sexto lugar general de 55 naciones participantes.

La MIA-F1 reconoce afectaciones de gran magnitud a los ecosistemas de los primeros tres tramos.

Los primeros vestigios del conocimiento matemático de especies de Homo sapiens, capaces de establecer marcas en los huesos de animales para recordar hechos importantes, datan de hace 30 mil años.

El ser humano tiene la capacidad de obtener e interpretar la información que obtiene de su medio ambiente para generar una respuesta, en forma de movimiento.

Mirar directamente al Sol durante un eclipse puede causar daños irreversibles en la retina, incluso sin sentir dolor; como sucedió en 1991.

Un sistema puede definirse como un conjunto de elementos o variables que interactúan de manera coherente. Estos elementos pueden ser de tipo económico, técnico, social o ecológico, y forman parte de una estructura compleja.

¿Y si existieran tatuajes que detecten cuándo y a qué le ponemos atención; o robots que “colaboran” con trabajadores? Estos avances tecnológicos relacionados con la neurociencia ya existen, pero ¿para qué y qué consecuencias trae a los millones de ciudadanos?

Leonard Euler aún de avanzada edad y ciego, continuó su producción a un ritmo acelerado; en 1770 publica otra de sus obras más sobresalientes Introducción al álgebra, pedagógicamente impecable.

Para muchos es normal que en la época de fin de año las temperaturas sean bajas. Esto se debe, en gran medida, a la inclinación de 23.5 grados del planeta con respecto a su eje, que va del polo norte al sur.

Aunque las ideas iniciales fueron concebidas por Bernhard Riemann y Richard Dedekind, se reconoce que el matemático que consolidó y sentó las bases para la axiomatización de la teoría de conjuntos fue el ruso George Cantor.

Estableció formalmente la continuidad de la recta real, definiendo un número real por medio de un dispositivo llamado cortadura.