Cargando, por favor espere...

Problemas inversos y modelos matemáticos
Para describir el comportamiento de los fenómenos físicos, biológicos, químicos, sociales o económicos, el hombre recurre, en la mayoría de los casos, a modelos matemáticos para ayudarse a resolver dos tipos de problemas.
Cargando...

Para describir el comportamiento de los fenómenos físicos, biológicos, químicos, sociales o económicos, el hombre recurre, en la mayoría de los casos, a modelos matemáticos para ayudarse a resolver dos tipos de problemas: los directos y los inversos. En los problemas inversos parte de varias observaciones y busca los factores causales que los produjeron. En términos matemáticos, se origina de las soluciones de una ecuación desconocida con alguna información complementaria e intenta reconstruir o determinar dichas ecuaciones. El hombre crea ciencia a partir de observaciones sobre los fenómenos; y con el uso de su razón encuentra las causas, las leyes y las fórmulas que lo originan o determinan. A partir del estudio de algunos síntomas, el hombre crea medicamentos, vacunas, etc., que lo curan.

Los problemas directos, en cambio, comienzan con las causas de los que luego se calculan los efectos, que a su vez son una continuación de los problemas inversos.  Matemáticamente hablando, los problemas directos son aquellos en los que se da una ecuación (que puede ser diferencial, en diferencias, integral, integro-diferencial, etc.) junto con alguna información complementaria (coeficientes de la ecuación, condiciones de frontera y/o iniciales, etc.) y se procede a resolver esa determinada ecuación con respecto a la variable tiempo para conocer lo que sucederá en un futuro inmediato o para anticiparse a una crisis económica, por citar un ejemplo. Ambos problemas, sin embargo, no están separados: el directo sigue del inverso y viceversa.

La solución a los problemas inversos ha sido muy útil para la sociedad, como puede verse en los siguientes ejemplos: 1) En el estudio del subsuelo, el comportamiento de las ondas sísmicas determina las características de éste; en el caso del subsuelo de la Ciudad de México (CDMX), por ejemplo, se descubrió que permanecía lacustre porque las ondas de los sismos son más alargadas, amplificadas y más intensas. 2) Las edades de las estrellas y sus grados de desarrollo son determinadas a partir del análisis de los espectros captados por los estudios fotográficos; por ello ahora se conoce la edad aproximada del Sol y su posible desaparición. 3) El diagnóstico de una enfermedad se elabora a partir de sus síntomas y con base en aquél se receta la medicina adecuada para curar a las personas.  4) La reconstrucción de un suceso pasado se rehace a partir de las huellas que subsisten en el presente; por ejemplo, los fósiles y los cráneos de animales y del Homo sapiens han ayudado a reconstruir su pasado. 5) El análisis de las articulaciones y del sistema nervioso central encefálico y medular indujo al hombre a construir un material que emite las resonancias magnéticas con las que ahora se detecta el cáncer. 6) El análisis de las estructuras óseas y las áreas con movimiento del cuerpo humano, como el tórax, el abdomen, el hígado y el páncreas, ha contribuido a la creación del escáner. 7) La detección de la radiación ultravioleta que emiten los cuerpos celestes –que ocasiona cáncer de piel en las personas que se exponen mucho al Sol– ha impulsado la elaboración de aparatos y cremas especiales para protegerse de ella.

Pues bien, para resolver los ejemplos que acabo de enumerar, el hombre ha dividido el problema inverso en problema inverso del momento, del valor propio, de dispersión, del procesamiento de la señal, de la ciencia psicológica, etc. y éstos, a su vez, han sido sintetizados en una rama especial de la matemática denominada problema inverso y teoría espectral de operadores acotados y no acotados en el espacio de Banach o de Hilbert.

En esta rama de las matemáticas se resuelven ecuaciones integrodiferenciales que surgen de la sismografía, la mecánica hereditaria, la termofísica, la termonuclear, la física cuántica, etc. y sus soluciones, con respecto al tiempo o a las coordenadas, sirven para resolver problemas cotidianos del hombre como los que acabo de mencionar.

En resumen, amable lector, por muy abstractas que sean las matemáticas, su origen es material, pues nacen de las necesidades prácticas del hombre y su pragmatismo está plenamente confirmado con los ejemplos arriba citados.


Escrito por Romeo Pérez

Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.


Notas relacionadas

El país carece de una Ley en Ciencia y tecnología, aunque se ha hablado al respecto de realizarla, aun no hay avances en este tema.

Los bosques de oyamel (familia Pinaceae) constituyen un ecosistema que se desarrolla a una altitud de entre dos mil y tres mil 600 metros sobre el nivel del mar y se pueden encontrar en las zonas montañosas de México.

Arquímedes se había adelantado a los matemáticos de mediados y último tercio del Siglo XVII como Cavalieri, Pascal, Newton y Bernoulli.

“El financiamiento es la columna vertebral de un sistema nacional de ciencia, tecnología e innovación. Desde aquí se aplican las políticas públicas, se incentiva o se corrige".

La filosofía no es un adorno, merece que se le reconozca su capacidad de estudio de la realidad, su utilidad en el más amplio sentido de la palabra, pues la humanidad la necesita para manifestarse como tal. Olvidar a la filosofía es condenarnos a las sombras...

La pandemia del Covid-19 es la primera advertencia de un cambio ecológico global al que nos acercamos peligrosamente.

Serán visibles en todo el hemisferio norte y sus meteoros podrán superar los 50 kilómetros por segundo.

Marx añade: “… por más que la mayor fuente de suicidios corresponda principalmente a la miseria, los encontramos en todas las clases, entre los ociosos ricos tanto como entre artistas y políticos”.

Alrededor de 20 especies de ciempiés podrían ser clave en el desarrollo de nuevos tratamientos médicos.

Aunque las ideas iniciales fueron concebidas por Bernhard Riemann y Richard Dedekind, se reconoce que el matemático que consolidó y sentó las bases para la axiomatización de la teoría de conjuntos fue el ruso George Cantor.

En recientes días hemos escuchado sobre la “nueva amenaza” que acecha las zonas costeras del Golfo de México, la superbacteria “carnívora” Vibro vilmificus; la mayoría de sus víctimas mortales fueron pacientes con problemas hepáticos.

El androcentrismo es la palabra empleada para hacer referencia a la masculinización de lo cotidiano en las prácticas sociales, culturales y en el ámbito científico.

Niños inquietos e inteligentes como el que me preguntó hay muchos en nuestro país; pero muy pocos son rescatados y apoyados para continuar con sus estudios

Para muchos, un trasplante es su única opción para salvarse ante enfermedades como cirrosis hepática, enfermedad pulmonar obstructiva crónica, leucemia, entre muchas otras. No obstante, es necesaria la existencia de donantes.

El tránsito hacia una matemática filosófica exige iniciar una quinta revolución matemática; para ello, el estudio de la historia desde el hacer de un matemático es fundamental.