Cargando, por favor espere...

Problemas inversos y modelos matemáticos
Para describir el comportamiento de los fenómenos físicos, biológicos, químicos, sociales o económicos, el hombre recurre, en la mayoría de los casos, a modelos matemáticos para ayudarse a resolver dos tipos de problemas.
Cargando...

Para describir el comportamiento de los fenómenos físicos, biológicos, químicos, sociales o económicos, el hombre recurre, en la mayoría de los casos, a modelos matemáticos para ayudarse a resolver dos tipos de problemas: los directos y los inversos. En los problemas inversos parte de varias observaciones y busca los factores causales que los produjeron. En términos matemáticos, se origina de las soluciones de una ecuación desconocida con alguna información complementaria e intenta reconstruir o determinar dichas ecuaciones. El hombre crea ciencia a partir de observaciones sobre los fenómenos; y con el uso de su razón encuentra las causas, las leyes y las fórmulas que lo originan o determinan. A partir del estudio de algunos síntomas, el hombre crea medicamentos, vacunas, etc., que lo curan.

Los problemas directos, en cambio, comienzan con las causas de los que luego se calculan los efectos, que a su vez son una continuación de los problemas inversos.  Matemáticamente hablando, los problemas directos son aquellos en los que se da una ecuación (que puede ser diferencial, en diferencias, integral, integro-diferencial, etc.) junto con alguna información complementaria (coeficientes de la ecuación, condiciones de frontera y/o iniciales, etc.) y se procede a resolver esa determinada ecuación con respecto a la variable tiempo para conocer lo que sucederá en un futuro inmediato o para anticiparse a una crisis económica, por citar un ejemplo. Ambos problemas, sin embargo, no están separados: el directo sigue del inverso y viceversa.

La solución a los problemas inversos ha sido muy útil para la sociedad, como puede verse en los siguientes ejemplos: 1) En el estudio del subsuelo, el comportamiento de las ondas sísmicas determina las características de éste; en el caso del subsuelo de la Ciudad de México (CDMX), por ejemplo, se descubrió que permanecía lacustre porque las ondas de los sismos son más alargadas, amplificadas y más intensas. 2) Las edades de las estrellas y sus grados de desarrollo son determinadas a partir del análisis de los espectros captados por los estudios fotográficos; por ello ahora se conoce la edad aproximada del Sol y su posible desaparición. 3) El diagnóstico de una enfermedad se elabora a partir de sus síntomas y con base en aquél se receta la medicina adecuada para curar a las personas.  4) La reconstrucción de un suceso pasado se rehace a partir de las huellas que subsisten en el presente; por ejemplo, los fósiles y los cráneos de animales y del Homo sapiens han ayudado a reconstruir su pasado. 5) El análisis de las articulaciones y del sistema nervioso central encefálico y medular indujo al hombre a construir un material que emite las resonancias magnéticas con las que ahora se detecta el cáncer. 6) El análisis de las estructuras óseas y las áreas con movimiento del cuerpo humano, como el tórax, el abdomen, el hígado y el páncreas, ha contribuido a la creación del escáner. 7) La detección de la radiación ultravioleta que emiten los cuerpos celestes –que ocasiona cáncer de piel en las personas que se exponen mucho al Sol– ha impulsado la elaboración de aparatos y cremas especiales para protegerse de ella.

Pues bien, para resolver los ejemplos que acabo de enumerar, el hombre ha dividido el problema inverso en problema inverso del momento, del valor propio, de dispersión, del procesamiento de la señal, de la ciencia psicológica, etc. y éstos, a su vez, han sido sintetizados en una rama especial de la matemática denominada problema inverso y teoría espectral de operadores acotados y no acotados en el espacio de Banach o de Hilbert.

En esta rama de las matemáticas se resuelven ecuaciones integrodiferenciales que surgen de la sismografía, la mecánica hereditaria, la termofísica, la termonuclear, la física cuántica, etc. y sus soluciones, con respecto al tiempo o a las coordenadas, sirven para resolver problemas cotidianos del hombre como los que acabo de mencionar.

En resumen, amable lector, por muy abstractas que sean las matemáticas, su origen es material, pues nacen de las necesidades prácticas del hombre y su pragmatismo está plenamente confirmado con los ejemplos arriba citados.


Escrito por Romeo Pérez

Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.


Notas relacionadas

Estableció formalmente la continuidad de la recta real, definiendo un número real por medio de un dispositivo llamado cortadura.

La vida de Henrik fue marcada por la pobreza, la fatalidad y la incomprensión; aun así, su mentalidad matemática, lo llevó a mostrar su genialidad, con ideas originales, mostrando caminos nuevos a los matemáticos de su época.

Las distopías, en esencia, orientan a los espectadores en ese mismo sentido, es decir, al conformismo.

Entre marxistas es frecuente afirmar que lo más importante de Marx no fue lo que dijo, sino su método de conocimiento. Esto es así porque, así como el universo es infinito, también lo es su conocimiento.

Desde hace más de un par de siglos el electorado estadounidense está dividido en tercios: uno republicano inamovible, otro demócrata igualmente invariable y otro 33 por ciento inerte.

Para mejorar el rendimiento de los atletas, debemos contemplar en nuestro trabajo deportivo el desarrollo de los conceptos y habilidades que explico en este artículo.

Un estudio reveló que “quejarse” es uno de los hábitos que más puede generar daños en el cerebro, tanto para la resolución de problemas como para la memoria.salu

En esta era digital somos aparentemente libres de hacer público lo que pensamos y sentimos; de compartir a dónde viajamos y de comprar una infinidad de mercancías. Pero esta “libertad” choca con el obstáculo económico.

La humanidad debe ser capaz de evitar cualquier desastre que extinga la vida en la Tierra.

Sirva de ejemplo la vida de Bonaventura Francesco Cavalieri para que los jóvenes mexicanos decidan estudiar matemáticas y comprendan que es útil en la resolución de problemas reales.

El famoso Axioma de elección juega un poco con la intuición humana, ya que demuestra que todo conjunto puede ser bien ordenado, aunque no se muestra cuál es ese orden.

Hace un par de años tuve dolor muscular, cansancio, fiebre y malestar general; por los síntomas, pensé que era Covid-19; pero tras varias pruebas, el diagnóstico final fue dengue.

“Es por demás evidente que la acusación que se ha lanzado desde la FGR es absurda e impropia de un país gobernado bajo principios mínimos de Estado de derecho".

Cada 14 de marzo se celebra el a la Matemática. Esta fecha fue elegida en virtud de que hace alusión a 3.14, que es el valor aproximado del enigmático número Pi (π).

Las estatuillas de Venus caracterizaron el arte europeo del Paleolítico, la etapa prehistórica más antigua y larga del Homo sapiens.