Cargando, por favor espere...

Más allá de los números naturales (II de II)
George Cantor sufrió una una profunda depresión por la muerte de su hijo, pero también por las ideas religiosas que tenía: Dios le revelaba todas las deducciones lógicas a las que llegó.
Cargando...

Cuando George Cantor concibió al ω (conjunto de los números naturales) como un todo (infinito en acto), y luego ω+1= {0,1,2,3,…,ω} = ω U {ω}; ω+2= ω+1 U {ω+1} y así sucesivamente, se convirtió en una obsesión que lo llevó a una profunda depresión, puesto que no solo pasaba por un proceso de duelo (muerte de su hijo) sino también por las profundas ideas religiosas que tenía, se preguntaba constantemente: ¿cómo es posible que pueda entender lo que está en la mente de Dios?, por lo tanto, creía que el mismo Dios le revelaba todas estas deducciones lógicas a las que llegó.

Superada la depresión, volvió a trabajar en matemática de los números ordinales, en su publicación de 1897, Contribuciones a la creación de una teoría de transfinitos, estableció por primera vez otra concepción de los números naturales, esta vez como un cuantificador del número de elementos de un conjunto, para ello define el concepto de cardinalidad de un conjunto, por ejemplo, la cardinalidad de ω lo llamó Card(ω)= N0 (se lee: álf sub cero), y encontró una aritmética sorprendente, por ejemplo, Card(ω +1) = Card (ω+2) =......= Card (ω+n) = N0, incluso N0 + N0 = N0, que llamó aritmética transfinita.

George Cantor también denominó que todo conjunto que tenga el mismo número de elementos de ω sea llamado enumerable y en 1874 demostró que el conjunto de los números racionales Q también es enumerable, mediante una novedosa técnica llamada de la diagonal. En 1891, demuestra que el conjunto de los números reales R no es enumerable, una de las demostraciones más bellas de la matemática, por su simpleza e ingeniosa forma de establecer que, si fuera numerable, se incurriría en un error. Hasta ese momento existían dos tipos de infinito, uno que es numerable (equivalente a la cardinalidad de los naturales) y otro que no lo es (equivalente a la cardinalidad de los números reales). La pregunta natural que George Cantor se formuló es: ¿será posible encontrar algún conjunto A tal que Card (N)< Card (A) < Card (R), esta conjetura ha pasado a la historia de la Matemática como la Hipótesis del Continuo, problema no resuelto hasta el día de hoy. Continuo también se le llama a la cardinalidad de los números reales. Por primera vez se establece ciertos tamaños en los conjuntos infinitos.

En este intento de George Cantor de encontrar este conjunto de cardinalidad intermedia, se sumergió en mundos abstractos sorprendentes. Por ejemplo, ¿quién es la Card (ω, ω+1, ω+2, ...)? Los llamó cardinales de segundo tipo, que denotó por N1. Con el objetivo de obtener la cardinalidad del continuo, dedujo lo siguiente: en vista que todo número real se puede escribir en base binaria, entonces conjetura que 2N0 es la cardinalidad de los reales y por lo tanto podría ser que c = 2 N0 = N1. Existe una generalización de la Hipótesis del Continuo, al construir 2, ¿será posible 2 N1 = N2 y así sucesivamente con N3, etc?

La Hipótesis de Continuo fue el primer problema planteado en 1900 por David Hilbert para ser resuelto por los matemáticos del Siglo XX, estamos en el Siglo XXI sigue sin resolver.

Actualmente la matemática se concibe como un conjunto de sistemas formales, aunque Kurt Gödel (1906 – 1978) ha demostrado que no existe sistema formal que pueda dar cuenta de todas las conjeturas que se puedan plantear (dentro del sistema) –incompletitud de la matemática–. Considerando la consistencia del sistema formal de Zermelo–Fraenkel, que sustenta la matemática actual, en 1940, Kurt Gödel ha demostrado que para cualquier sistema formal es imposible demostrar que 2 N0 = N1 es falsa. Sin embargo, en 1963, Paul Cohen (1934 -2003) demostró que tampoco se puede probar que 2 N0 = N1 es verdadera. Estas afirmaciones son profundos resultados matemáticos, que conllevan a la reflexión filosófica, sobre el futuro del formalismo de Hilbert.


Escrito por Dr. Esptiben Rojas Bernilla

Colaborador


Notas relacionadas

El movimiento pedagógico “matemática moderna”, de los años 50-60 del s. XX, trajo consecuencias funestas en la educación; por ello, en los años 70, matemáticos como Morris Kline, escribieron este libro que a nuestro juicio tiene actual vigencia.

La alquimia árabe resultó ser una inspiración a Roger Bacon y, más tarde, a Isaac Newton.

Aunque la pérdida de cola en los humanos ha sido objeto de diferentes teorías evolutivas, hasta hace unos días era un misterio sin resolver.

Desde el punto de vista biológico, el envejecimiento humano es la acumulación de diversos daños celulares y moleculares a lo largo del tiempo, lo que lleva a un descenso gradual de las capacidades físicas y mentales.

El papel de la ciencia en el desarrollo social se piensa en sus aportaciones a la tecnología para elevar la productividad, generar riqueza, crecimiento económico y progreso.

El uso de semillas mejoradas es una alternativa que garantiza la rentabilidad de las cosechas y la seguridad alimentaria, pero esa tecnología no es accesible para los 6.8 millones de personas que se dedican al sector agrícola.

En el ámbito de la astronomía, Galileo no solo confirmó que la Tierra se movía en torno al Sol y se burló de los inquisidores del Santo Oficio.

¿Por qué las plantas generan frutos? Porque como todos los seres vivos, buscan perpetuarse en el mundo. El fruto es una adaptación exitosa de las plantas para lograr esta finalidad.

Von Neumann fue considerado como superdotado, ya que desde los seis años ya sabía dividir, hablar griego antiguo, francés, alemán y latín, y a sus ocho años ya dominaba el cálculo diferencial e integral.

Los problemas personales no afectaron su brillante carrera académica; su jornada incluía largas horas de concentración.

Un sistema puede definirse como un conjunto de elementos o variables que interactúan de manera coherente. Estos elementos pueden ser de tipo económico, técnico, social o ecológico, y forman parte de una estructura compleja.

Por primera vez en la historia, médicos trasplantaron un riñón genéticamente modificado de un cerdo para un ser humano vivo.

En nuestros días, los científicos discuten con gran preocupación el posible aumento, en las futuras generaciones, de enfermedades o males derivados del efecto ambiental catastrófico más grande después de la época de las postguerras.

Una consecuencia sorprendente del resultado BanachTarski, es demostrar que se puede particionar una bola del tamaño de la tierra, reordenar esta partición y obtener una bola del tamaño del sol.

Los problemas de la humanidad se agudizarán; en primer lugar, por la falta de alimentos ya que, con suelos destruidos o empobrecidos.