Cargando, por favor espere...
Cuando George Cantor concibió al ω (conjunto de los números naturales) como un todo (infinito en acto), y luego ω+1= {0,1,2,3,…,ω} = ω U {ω}; ω+2= ω+1 U {ω+1} y así sucesivamente, se convirtió en una obsesión que lo llevó a una profunda depresión, puesto que no solo pasaba por un proceso de duelo (muerte de su hijo) sino también por las profundas ideas religiosas que tenía, se preguntaba constantemente: ¿cómo es posible que pueda entender lo que está en la mente de Dios?, por lo tanto, creía que el mismo Dios le revelaba todas estas deducciones lógicas a las que llegó.
Superada la depresión, volvió a trabajar en matemática de los números ordinales, en su publicación de 1897, Contribuciones a la creación de una teoría de transfinitos, estableció por primera vez otra concepción de los números naturales, esta vez como un cuantificador del número de elementos de un conjunto, para ello define el concepto de cardinalidad de un conjunto, por ejemplo, la cardinalidad de ω lo llamó Card(ω)= N0 (se lee: álf sub cero), y encontró una aritmética sorprendente, por ejemplo, Card(ω +1) = Card (ω+2) =......= Card (ω+n) = N0, incluso N0 + N0 = N0, que llamó aritmética transfinita.
George Cantor también denominó que todo conjunto que tenga el mismo número de elementos de ω sea llamado enumerable y en 1874 demostró que el conjunto de los números racionales Q también es enumerable, mediante una novedosa técnica llamada de la diagonal. En 1891, demuestra que el conjunto de los números reales R no es enumerable, una de las demostraciones más bellas de la matemática, por su simpleza e ingeniosa forma de establecer que, si fuera numerable, se incurriría en un error. Hasta ese momento existían dos tipos de infinito, uno que es numerable (equivalente a la cardinalidad de los naturales) y otro que no lo es (equivalente a la cardinalidad de los números reales). La pregunta natural que George Cantor se formuló es: ¿será posible encontrar algún conjunto A tal que Card (N)< Card (A) < Card (R), esta conjetura ha pasado a la historia de la Matemática como la Hipótesis del Continuo, problema no resuelto hasta el día de hoy. Continuo también se le llama a la cardinalidad de los números reales. Por primera vez se establece ciertos tamaños en los conjuntos infinitos.
En este intento de George Cantor de encontrar este conjunto de cardinalidad intermedia, se sumergió en mundos abstractos sorprendentes. Por ejemplo, ¿quién es la Card (ω, ω+1, ω+2, ...)? Los llamó cardinales de segundo tipo, que denotó por N1. Con el objetivo de obtener la cardinalidad del continuo, dedujo lo siguiente: en vista que todo número real se puede escribir en base binaria, entonces conjetura que 2N0 es la cardinalidad de los reales y por lo tanto podría ser que c = 2 N0 = N1. Existe una generalización de la Hipótesis del Continuo, al construir 2, ¿será posible 2 N1 = N2 y así sucesivamente con N3, etc?
La Hipótesis de Continuo fue el primer problema planteado en 1900 por David Hilbert para ser resuelto por los matemáticos del Siglo XX, estamos en el Siglo XXI sigue sin resolver.
Actualmente la matemática se concibe como un conjunto de sistemas formales, aunque Kurt Gödel (1906 – 1978) ha demostrado que no existe sistema formal que pueda dar cuenta de todas las conjeturas que se puedan plantear (dentro del sistema) –incompletitud de la matemática–. Considerando la consistencia del sistema formal de Zermelo–Fraenkel, que sustenta la matemática actual, en 1940, Kurt Gödel ha demostrado que para cualquier sistema formal es imposible demostrar que 2 N0 = N1 es falsa. Sin embargo, en 1963, Paul Cohen (1934 -2003) demostró que tampoco se puede probar que 2 N0 = N1 es verdadera. Estas afirmaciones son profundos resultados matemáticos, que conllevan a la reflexión filosófica, sobre el futuro del formalismo de Hilbert.
El desarrollo de la investigación matemática ha sido tan espectacular, que abarcar todo el conocimiento actual de la matemática se ha vuelto imposible para cualquier ser humano.
Roscosmos y la Administración Nacional China del Espacio (CNSA) firmaron en su momento un programa conjunto de cooperación en el espacio para el lustro 2018-2022.
La variedad de ratones transgénicos es muy amplia y, dependiendo de las necesidades de investigación que se requieran, será el tipo de ratón que se utilice.
Creer que las verdades matemáticas y objetos matemáticos tienen existencia independiente de la mente humana no tiene fundamento; desde Pitágoras hasta algunos matemáticos más contemporáneos creen en esta independencia.
Para una circunferencia no es difícil notar que la forma de la figura siempre surge y resurge siendo la misma
El inicio de la rigurosidad en el pensamiento matemático es obra del gran maestro Weierstrass, quien, entre otras atribuciones, estableció la existencia de una curva continua sin tangentes, sorprendiendo a los analistas de su época.
La embriogénesis somática, una técnica biotecnológica, permite reducir los tiempos en que las plantas crecen o la susceptibilidad a contraer enfermedades, permitiendo una mayor producción en el campo.
La ANEPPMAC realizó en la UAG un evento deportivo, cultural y científico en el que alumnos de la Escuela Antonio Caso Zapopan consiguieron primeros lugares por sus proyectos.
Desde el inicio de la cuarta revolución matemática, en las primeras décadas del Siglo XX, el formalismo hilbertiano ha caracterizado el trabajo matemático hasta el día de hoy. Este paradigma histórico del formalismo se caracteriza por...
La proteína es un macronutriente indispensable para el crecimiento y el mantenimiento de órganos y músculos en el cuerpo de los animales.
Se ha demostrado que aunque no es un alimento completo por sí solo, los productos comestibles a base de maíz aportan grandes beneficios para la salud humana.
Aunque las ideas iniciales fueron concebidas por Bernhard Riemann y Richard Dedekind, se reconoce que el matemático que consolidó y sentó las bases para la axiomatización de la teoría de conjuntos fue el ruso George Cantor.
La filosofía no es un adorno, merece que se le reconozca su capacidad de estudio de la realidad, su utilidad en el más amplio sentido de la palabra, pues la humanidad la necesita para manifestarse como tal. Olvidar a la filosofía es condenarnos a las sombras...
“Es por demás evidente que la acusación que se ha lanzado desde la FGR es absurda e impropia de un país gobernado bajo principios mínimos de Estado de derecho".
“El paciente podrá hacer llamadas telefónicas, manejar una computadora o comunicarse sin la necesidad de mover sus propios músculos, que actualmente están comprometidos", afirmó el multimillonario Elon Musk.
Escrito por Dr. Esptiben Rojas Bernilla
Colaborador