Cargando, por favor espere...
Quizás la única disciplina que no tenga una definición consensuada sea la matemática; las razones son múltiples y no las abordaremos en este artículo. Sin embargo, para poder distinguir esta disciplina científica del conocimiento previo a ella, debemos dar alguna definición actualizada de matemática. Llamaremos matemática a un conjunto de sistemas formales que se interconectan y adquieren una interpretación conceptual en el cerebro humano. De estos sistemas formales emergen propiedades de atemporalidad y de universalidad, como producto se inventan objetos ontológicamente neutros.
Desde luego que la definición dada anteriormente requiere una explicación filosófica que está fuera de los límites divulgativos de este artículo. Sin embargo, si podemos entender que, desde las ideas de Aristóteles (Siglo IV a.C.), se fue estructurando un primer sistema formal a través de la antigua cultura griega; esto ocurrió en el Siglo III a.C., en la magistral obra Elementos de Euclides, aun con los errores conceptuales que ahí se encuentran, ha sido un primer intento sólido de constituir un cuerpo de conocimiento universal y atemporal. Nace lo que los pitagóricos llamaron matemática, en el Siglo VI a.C.; pero que, por aquella época, no existía algún sistema formal que lo sustentara y sus fundamentos estaban mezclados con ideas místicas basadas en mitos egipcios.
A principios del Siglo XX se descubrieron tablillas de arcilla en Irak y papiros en Egipto que contenían problemas y soluciones con data de cinco mil a cuatro mil años. Estos artefactos de estudio han sido estudiados y descifrados y nos han permitido conocer el nivel de desarrollo de las antiguas culturas de Egipto y Babilonia.
La evidencia científica indica que en estos artefactos sólo existían problemas concretos y soluciones concretas de la vida cotidiana; y de gobierno también existen algunos problemas para ejercitar el ingenio mental. Las soluciones se realizaban de manera algorítmica –como si el escriba únicamente se limitara a indicar los procesos de cálculo a sus discípulos– sin reglas generales ni mucho menos definiciones precisas, axiomas o fórmulas generales; es decir, no existe algún sistema formal que pueda conllevar a teoremas. Por esta razón hemos denominado “protomatemática” a todo este conocimiento antiguo: por no cumplir la definición dada anteriormente.
La sola representación gráfica tampoco es un conocimiento matemático si no está ligada a una interpretación conceptual dentro de un sistema formal. Es decir, la matemática, más que gráficos, es la formalización de ideas básicas rigurosamente demostradas mediante un proceso hipotético- deductivo. Por ejemplo, no es suficiente dibujar una curva cerrada en una hoja de papel para afirmar que esta curva divide al plano en dos conjuntos disjuntos (sin intersección), sino que es imperativo demostrarlo rigurosamente. En el trabajo matemático y en la enseñanza, el gráfico ayuda para entender, comprender, pero no es una verdad matemática; para ello hay que demostrarlo; y esta demostración se realiza dentro de un sistema formal específico.
Las antiguas culturas de Egipto y Babilonia estaban lejos de conseguir un conocimiento científico estructurado. Sin embargo, tienen el gran mérito de haber preparado algunas ideas primarias para que los griegos pudieran establecer la primera revolución matemática, que en rigor es el nacimiento de lo que hoy llamamos matemática. Otro de los errores muy comunes consiste en identificar objetos materiales con objetos matemáticos; por ejemplo, se afirma que el Sol tiene forma esférica, las figuras artísticas suelen confundirlo con objetos matemáticos. Pero ante un resultado matemático fehacientemente demostrado, como: de una esfera matemática, es posible “particionarlo”, reacomodar sus partes y formar dos esferas del mismo tamaño (Teorema de Banach-Tarski), las personas –incluso matemáticos– no comprenden cómo puede ser esto posible. Es posible, puesto que la esfera matemática no es material, es un constructo mental con una definición precisa; y dentro de esta ficción es posible hacerlo, puesto que el sistema formal usado para esta demostración también es otra ficción: no existe en lo material.
Probablemente los lectores se pregunten: si la matemática es una ficción humana, ontológicamente neutra, ¿por qué es posible que la matemática dé cuenta de la realidad y parezca que la naturaleza está creada con leyes matemáticas que debemos descubrir?. Sin embargo, no existe evidencia científica que demuestre que esto ocurra; sólo son suposiciones basadas en creencias, opiniones sin fundamento.
Matemático universal, capaz de conectar las ecuaciones diferenciales y el álgebra abstracta.
El desarrollo de la investigación matemática ha sido tan espectacular, que abarcar todo el conocimiento actual de la matemática se ha vuelto imposible para cualquier ser humano.
La personalidad de Gottfried Leibniz, lo convertía en un brillante diplomático.
La existencia de los conjuntos infinitos en matemática es obra de George Cantor, quien quedó maravillado cuando descubrió algunas rarezas que emanaban de este objeto, sin darse cuenta que estaba a punto de ingresar en un fascinante mundo abstracto.
El pensamiento lógico en el ser humano es una característica antropológica formada en el cerebro humano por miles de años de evolución.
Toda investigación no es necesariamente científica, a veces se confunde con investigación tecnológica, o peor, con informes técnicos. Aclararemos estas confusiones en este artículo.
El Siglo XXI es de la comunicación matemática, espero que en el futuro se sumen una mayor cantidad de divulgadores y difusores del conocimiento matemático, así la contribución para nuestra sociedad será enorme, entre sus muchos beneficios, porque mejorará la educación ciudadana.
La tenacidad en su trabajo le acompañó hasta una edad muy avanzada.
Es considerado el más prolífico de los matemáticos; su nombre figura en fórmulas, teoremas, números, integrales y constantes en distintas ramas de la matemática.
El tránsito hacia una matemática filosófica exige iniciar una quinta revolución matemática; para ello, el estudio de la historia desde el hacer de un matemático es fundamental.
Ninguno de estos libros me parece copia o similares a los libros estándar.
A principios del Siglo XX se descubrieron tablillas de arcilla en Irak y papiros en Egipto que contenían problemas y soluciones con data de cinco mil a cuatro mil años.
El alejamiento de Alexander Grothendieck del mundo académico empezó en 1973, cuando decidió abandonar París y se estableció en un pequeño pueblo (Villecun) de Montpellier.
Esta medalla tiene la imagen del matemático griego Arquímedes y una inscripción que dice “Trascenderse a uno mismo y dominar el mundo”.
Mientras el trabajo matemático tiene reglas, axiomas, y su libertad está en función de estar gobernado por sistemas formales; en el trabajo filosófico...
Morena destruye educación, cierra unidad de la UNAM en Chimalhuacán
Cuestiones obvias no tan obvias
Afectados 4.9 millones de hogares mexicanos por impuesto a remesas
Sin clases 8 millones de niños, paro de maestros cumple una semana
Pemex despedirá a 3 mil de sus trabajadores
Gobierno de la 4T abre la puerta a la industria militar estadounidense
Escrito por Dr. Esptiben Rojas Bernilla
Colaborador