Cargando, por favor espere...
Uno de los conceptos que más ha apasionado a los seres humanos es la idea de infinito. Hace cientos de miles de años, el ser humano, se dio cuenta que puede realizar tanto como desee el acto de contar; en ese preciso momento se dio un salto cognitivo trascendental para el futuro de la humanidad, nació la protomatemática. Este tipo de conteo es lo que los griegos llamaron infinito potencial y era el único percibido por la mente humana desde el punto de vista matemático. Pensar el infinito como un todo, por ejemplo, imaginar todos los números naturales, está fuera del alcance humano; los griegos llamaron a esta idea infinito actual o en acto. Fue Aristóteles quien estableció trabajar sólo con el infinito potencial, y así se hizo hasta fines del Siglo XIX. La formalización del infinito en acto, empezó con Richard Dedekind, quién demostró la continuidad de la recta real –y, por lo tanto, que se puede pensar en los números reales como un todo–, y luego George Cantor, quien capturó la característica esencial de este tipo de objetos para definirlos matemáticamente.
Según Cantor, un conjunto A es infinito si posee un subconjunto propio en el cual se puede poner en correspondencia biunívoca con A, por ejemplo, los números naturales; es un conjunto infinito, puesto que existe el conjunto de los números pares, que se puede poner en correspondencia biunívoca con el conjunto de los naturales. Además, Cantor probó que todo conjunto infinito posee un subconjunto enumerable (es decir, aquel conjunto que se puede poner en correspondencia biunívoca con el conjunto de los números naturales), y con ello demuestra que el conjunto de los números reales es infinito, puesto que Q es subconjunto de los números reales R, donde Q es enumerable, probado por el mismo Cantor.
Este salto epistémico en matemática de poder representar por letras a objetos infinitos en acto, como N, Q, R, constituyó el inicio de una fascinante invención, en donde se establecieron infinitos de distinto tamaño, uno más grande que otros, haciendo volar nuestra imaginación a fantásticos mundos conceptuales.
Cantor logró establecer dos tipos de infinitos, los que son enumerables, y los que no lo son. Cantor probó que el conjunto de los números reales no son enumerables, sino un continuo. Para establecer los tamaños entre los conjuntos, estableció el concepto de cardinalidad de un conjunto, es decir, una forma de contar sus elementos. Estableció la cardinalidad de los naturales a la que denominó y que se lee Aleph y la cardinalidad de los números reales denotado por c. Además, Cantor planteó una conjetura a la que nunca pudo responder, es la llamada hipótesis del continuo y que dice: “Existirá algún conjunto cuya cardinalidad se encuentre entre y c”. Esta conjetura aún no ha sido respondida por los matemáticos del mundo y probablemente sea de aquellas conjeturas que no sea posible saber si es verdadera o falsa dentro del sistema formal actual.
Estos dos tipos de infinito, uno más pequeño, los N y otro más grande, los R, fue el inicio de la creación de otros infinitos. Además, se inició la concepción de ordenación en un conjunto: a los conjuntos con cierto tipo de ordenación se les denominó ordinales, el primero de ellos es el conjunto de los números naturales, que se empezaron a denotar por ω y se definió su sucesor ω+1= ω unión {ω}, y de la misma manera el sucesor de este sucesor ω +2, y así sucesivamente, generando más y más infinitos. Sin embargo, estos nuevos infinitos siguen teniendo la misma cardinalidad. Cantor se dio cuenta muy pronto de que estos nuevos infinitos, a los que llamó transfinitos, tenían su propia aritmética, por ejemplo, + = , x = , etc. Por otro lado, los números reales continuarían siendo el infinito más grande.
Estos fascinantes mundos que Cantor creó para nosotros no están exentos de debate filosófico; existen filósofos que cuestionan esta construcción de los infinitos actuales y prefieren seguir su intuición finita (humana). Para ello se inventó el formalismo matemático, para capturar elementos esenciales de aquellos objetos que queremos dar existencia, en este caso, los conjuntos infinitos, independientes de nuestra intuición humana.
Luca Pacioli fue matemático, contador y profesor universitario.
En la novela Los crímenes de Oxford, su autor, el doctor en Matemáticas y escritor argentino Guillermo Martínez, es un ejemplo de convergencia de estas dos áreas aparentemente disímiles: matemáticas y literatura.
El Premio Abel puede considerarse como el premio Nobel para matemáticos.
El teorema más popular en matemática es probablemente el llamado Teorema de Pitágoras.
Es posible crear una matemática filosófica desde el hacer de un matemático que sea realmente relevante y visionaria. Debe de ser una reflexión humanizante, pero a la vez esclarecedora del mundo de las ideas formales.
Los objetos matemáticos, como constructos, se conciben en la mente humana; para ello se debe tener una idea precisa para formalizarlos y que luego emerjan sus propiedades.
La teoría de la medida es una parte de la matemática contemporánea.
Paul Erdós colaboró con tantos matemáticos que dio origen al famoso “número de Erdós”.
Esta medalla tiene la imagen del matemático griego Arquímedes y una inscripción que dice “Trascenderse a uno mismo y dominar el mundo”.
En la ruleta los resultados son equiprobables, no hay predilección por ningún número o color.
Este cerebro racional, con millones de conexiones neuronales, es también emocional, e ilógico.
Un grupo de brillantes matemáticos franceses, autodenominado Bourbaki desarrolló, desde las primeras décadas del Siglo XX, un programa fundacional de la matemática con gran influencia en el trabajo matemático contemporáneo.
Uno de los conceptos que más ha apasionado a los seres humanos es la idea de infinito.
Toda afirmación en matemática es siempre referida a un determinado sistema formal.
Matemático universal, capaz de conectar las ecuaciones diferenciales y el álgebra abstracta.
Habitantes de Ixtapaluca alistan protestas por mal Gobierno de Felipe Arvizu
Secretaría de Salud elimina programas para 2026
Caen presuntos feminicidas de una menor de dos años en Chimalhuacán
Robos y violencia elevan 10% costos operativos de minería
Cierran carretera Texcoco-Lechería
Rusia duda de la autenticidad del audio sobre amenaza de “bombardear Moscú”
Escrito por Dr. Esptiben Rojas Bernilla
Colaborador