Cargando, por favor espere...
Uno de los conceptos que más ha apasionado a los seres humanos es la idea de infinito. Hace cientos de miles de años, el ser humano, se dio cuenta que puede realizar tanto como desee el acto de contar; en ese preciso momento se dio un salto cognitivo trascendental para el futuro de la humanidad, nació la protomatemática. Este tipo de conteo es lo que los griegos llamaron infinito potencial y era el único percibido por la mente humana desde el punto de vista matemático. Pensar el infinito como un todo, por ejemplo, imaginar todos los números naturales, está fuera del alcance humano; los griegos llamaron a esta idea infinito actual o en acto. Fue Aristóteles quien estableció trabajar sólo con el infinito potencial, y así se hizo hasta fines del Siglo XIX. La formalización del infinito en acto, empezó con Richard Dedekind, quién demostró la continuidad de la recta real –y, por lo tanto, que se puede pensar en los números reales como un todo–, y luego George Cantor, quien capturó la característica esencial de este tipo de objetos para definirlos matemáticamente.
Según Cantor, un conjunto A es infinito si posee un subconjunto propio en el cual se puede poner en correspondencia biunívoca con A, por ejemplo, los números naturales; es un conjunto infinito, puesto que existe el conjunto de los números pares, que se puede poner en correspondencia biunívoca con el conjunto de los naturales. Además, Cantor probó que todo conjunto infinito posee un subconjunto enumerable (es decir, aquel conjunto que se puede poner en correspondencia biunívoca con el conjunto de los números naturales), y con ello demuestra que el conjunto de los números reales es infinito, puesto que Q es subconjunto de los números reales R, donde Q es enumerable, probado por el mismo Cantor.
Este salto epistémico en matemática de poder representar por letras a objetos infinitos en acto, como N, Q, R, constituyó el inicio de una fascinante invención, en donde se establecieron infinitos de distinto tamaño, uno más grande que otros, haciendo volar nuestra imaginación a fantásticos mundos conceptuales.
Cantor logró establecer dos tipos de infinitos, los que son enumerables, y los que no lo son. Cantor probó que el conjunto de los números reales no son enumerables, sino un continuo. Para establecer los tamaños entre los conjuntos, estableció el concepto de cardinalidad de un conjunto, es decir, una forma de contar sus elementos. Estableció la cardinalidad de los naturales a la que denominó y que se lee Aleph y la cardinalidad de los números reales denotado por c. Además, Cantor planteó una conjetura a la que nunca pudo responder, es la llamada hipótesis del continuo y que dice: “Existirá algún conjunto cuya cardinalidad se encuentre entre y c”. Esta conjetura aún no ha sido respondida por los matemáticos del mundo y probablemente sea de aquellas conjeturas que no sea posible saber si es verdadera o falsa dentro del sistema formal actual.
Estos dos tipos de infinito, uno más pequeño, los N y otro más grande, los R, fue el inicio de la creación de otros infinitos. Además, se inició la concepción de ordenación en un conjunto: a los conjuntos con cierto tipo de ordenación se les denominó ordinales, el primero de ellos es el conjunto de los números naturales, que se empezaron a denotar por ω y se definió su sucesor ω+1= ω unión {ω}, y de la misma manera el sucesor de este sucesor ω +2, y así sucesivamente, generando más y más infinitos. Sin embargo, estos nuevos infinitos siguen teniendo la misma cardinalidad. Cantor se dio cuenta muy pronto de que estos nuevos infinitos, a los que llamó transfinitos, tenían su propia aritmética, por ejemplo, + = , x = , etc. Por otro lado, los números reales continuarían siendo el infinito más grande.
Estos fascinantes mundos que Cantor creó para nosotros no están exentos de debate filosófico; existen filósofos que cuestionan esta construcción de los infinitos actuales y prefieren seguir su intuición finita (humana). Para ello se inventó el formalismo matemático, para capturar elementos esenciales de aquellos objetos que queremos dar existencia, en este caso, los conjuntos infinitos, independientes de nuestra intuición humana.
La teoría de la medida es una parte de la matemática contemporánea.
Toda investigación no es necesariamente científica, a veces se confunde con investigación tecnológica, o peor, con informes técnicos. Aclararemos estas confusiones en este artículo.
Es posible crear una matemática filosófica desde el hacer de un matemático que sea realmente relevante y visionaria. Debe de ser una reflexión humanizante, pero a la vez esclarecedora del mundo de las ideas formales.
La tenacidad en su trabajo le acompañó hasta una edad muy avanzada.
El tránsito hacia una matemática filosófica exige iniciar una quinta revolución matemática; para ello, el estudio de la historia desde el hacer de un matemático es fundamental.
Los modos del pensamiento matemático influyen en su hacer, el Siglo XX ha sido testigo de al menos dos formas de este hacer, con marcada influencia ideológica.
Fourier consideraba que toda función continua puede representarse como una serie infinita de senos y cosenos.
La personalidad de Gottfried Leibniz, lo convertía en un brillante diplomático.
La matemática del Siglo XVIII se caracteriza por su falta de rigor, por carecer de un cuerpo teórico para hacer a las nuevas herramientas matemáticas más eficientes.
Los matemáticos no sólo eran conocedores de la génesis de su disciplina, sino que ejercían una alta valoración de la Historia de la Matemática.
El número más famoso en la matemática es el llamado pi, denotado por π.
Esta medalla tiene la imagen del matemático griego Arquímedes y una inscripción que dice “Trascenderse a uno mismo y dominar el mundo”.
La matemática es un producto cultural.
A Pitágoras se le atribuye la idea conceptual de “primo”.
Desde el inicio de la cuarta revolución matemática, en las primeras décadas del Siglo XX, el formalismo hilbertiano ha caracterizado el trabajo matemático hasta el día de hoy. Este paradigma histórico del formalismo se caracteriza por...
Docente del Tecnológico de Tecomatlán participa en estancia de cooperación agrícola en China
EE. UU.: ganan las oligarquías, pierden las mayorías
Pemex incumple promesa de pago a proveedores: deuda se dispara en 170%
El Premio Nobel de economía y la apología de Estados Unidos
Presentan sitio para registro de aspirantes a jueces, magistrados y ministros
Frenan ecocidio en Parque Nacional Cabo Pulmo
Escrito por Dr. Esptiben Rojas Bernilla
Colaborador