Cargando, por favor espere...
Este número irracional, como los demás números, surgió gracias al desarrollo económico de una sociedad en un determinado momento de la historia. Su conocimiento empírico comenzó cuando el hombre tuvo necesidad de calcular áreas o volúmenes de objetos curvilíneos, circulares o esféricos. En ese proceso de conocimiento, el hombre observó que, si relacionaba el perímetro de una circunferencia con su diámetro lograría encontrar el área de un círculo. Así fue como la práctica diaria le enseñó que la longitud de la circunferencia podía igualarse a tres veces la longitud del diámetro, más una cantidad muy pequeña de dígitos que se extendían indefinidamente.
En la búsqueda del área exacta del círculo, el hombre “se estrelló” con el problema de que no podía encontrar el último de esa serie de dígitos colocados después del punto decimal. Descubrió que no era posible encontrar el área exacta del círculo recurriendo solo a la geometría. Luchó incansablemente con el problema planteado, hasta que lo resolvió a finales del Siglo XIX, gracias al cálculo infinitesimal desarrollado por Isaac Newton, Pierre de Fermat, René Descartes y Gottfried Leibniz y a la teoría de conjuntos formalizada por el matemático alemán George Cantor.
La historia del número π, de acuerdo con el ingeniero químico Simón Reif Acherman, se divide en tres grandes períodos: el primero comienza en las antiguas civilizaciones sumeria, egipcia y china, que grabaron sus resultados en tablillas de arcilla y papiros, hasta el surgimiento del cálculo infinitesimal (mediados del Siglo XVII) con Fermat y Descartes; el segundo periodo comprende los aportes científicos y filosóficos de Newton y Leibniz; y el tercero y último periodo, abarca la mitad del Siglo XVIII hasta finales del XIX.
El conocimiento empírico egipcio del número π comenzó con las aproximaciones de hasta nueve dígitos, como lo muestra el papiro de Rhind: un valor aproximado de equivalente a 3.160493827. Pero la mejor aproximación al área del círculo se obtuvo en la cultura griega, con los matemáticos Eudoxo de Cnido y Arquímedes de Siracusa. Ellos se plantearon el problema de la cuadratura de la parábola y la cuadratura del círculo, es decir, el problema de encontrar el área de un segmento parabólico (región encerrada por una parábola y una línea recta) en un cuadrado, o encontrar el área de un círculo en un cuadrado.
Para resolver la cuadratura de la parábola y la del círculo, Eudoxo y Arquímedes emplearon el método por agotamiento o de exhaución y el de reducción al absurdo. Para la primera, comenzaron a dividir la región encerrada en una “infinidad” de triángulos cada vez más pequeños. Después sumaron el área de cada uno de los triángulos con el método de la progresión geométrica y encontraron el área del segmento parabólico. Para la segunda, Arquímedes construyó polígonos de lados 6, 12, 24, 48 y 96 dentro y fuera de la circunferencia y calculó el área de cada uno de los polígonos indicados. Al aumentar los lados de los polígonos, inscritos y circunscritos a la circunferencia de radio 1, Arquímedes, usando la ya conocida igualdad: donde P es el perímetro para cada lado n y D el diámetro del círculo, llegó al siguiente resultado: o lo que es lo mismo, a 3.140845<π<3.142857.
Como el lector ya observó, conforme el hombre iba perfeccionando sus métodos de investigación, también se acercaba más a la solución. Sin embargo, las condiciones materiales de su tiempo y el desarrollo de la matemática, todavía no daba el salto que se requería para encontrar el área exacta del círculo. En el Siglo II después de Cristo, el matemático Claudio Ptolomeo había mejorado la aproximación. Con un polígono de 120 lados, inscrito en una circunferencia, construyó una tabla de las cuerdas de un círculo subtendidas por arcos de medio grado, un grado y así sucesivamente, hasta arcos de 180 grados. Luego, usando el método de fracciones sexagesimales, pudo encontrar la aproximación: cuya expresión en decimales es 3.1416666667.
El hombre antiguo estuvo “muy cerca” de hallar el área del círculo. Sin embargo, como nos enseñaron en “las buenas escuelas”, el área del círculo con radio uno es un número irracional con un número infinito de dígitos que no son periódicos. Era imposible, pues, encontrar el valor de π con las herramientas matemáticas conocidas hasta ese momento.
Los trabajos que pueden contribuir a un incremento en el riesgo de sufrir demencia destacan los que están relacionados con funciones mecánicas o procesos automatizados.
Cuántas veces hemos tenido la duda de si tomar un medicamento alopático o un té para curar algún malestar o disminuir el síntoma de una enfermedad.
Investigadores analizaron 5 mil 853 alimentos y los clasificaron por su carga de enfermedades nutricionales. Tales alimentos van desde los 74 minutos de vida perdidos hasta 80 minutos ganados por ración.
Generaciones nacen inmersas en las redes, mismas que onstituyen la forma predominante de relacionarse con los otros. Algunos factores que propician el ciberacoso son: la viralidad, la rapidez de propagación de las publicaciones y el anonimato del agresor.
El pueblo demanda salud, obra de 1951, es una de las pinturas que Diego Rivera plasmó que, además de centrarse en temas sociales y políticos, también se hizo alusión a la ciencia.
Los daños causados al planeta comienzan a pasarnos factura. Las tasas de deforestación han afectado gravemente las distintas funciones de los bosques, además, su papel como regulador del clima está siendo severamente afectado.
El término “transgénico” significa la inserción de un gen extraño en un organismo, acción propia de la tecnología biológica que consiste en transferir un fragmento del ADN de una célula a otra.
Fermat nunca publicó un artículo matemático, todos sus aportes eran mediante cartas personales, sin embargo sus conjeturas fueron importantes para el desarrollo matemático.
Cabe destacar que el proceso fue vigilado por médicos presentes en el quirófano de Beijing para garantizar la seguridad en todo momento.
¿Cómo es que estos genes pasaban de los padres a los hijos?
En la ruleta los resultados son equiprobables, no hay predilección por ningún número o color.
La vida de Henrik fue marcada por la pobreza, la fatalidad y la incomprensión; aun así, su mentalidad matemática, lo llevó a mostrar su genialidad, con ideas originales, mostrando caminos nuevos a los matemáticos de su época.
"Sólo siete países africanos (de 54) tienen una posibilitad de conseguir el objetivo", declaró Matshidiso Moeti, directora de la OMS para África, en una rueda de prensa en línea.
La comunicación no es la única ni es exclusiva de los seres humanos. Acá te contamos por qué.
Por ello, ahora como antes, es de vital importancia que los científicos dejen de ser una élite que atesora el conocimiento, y que devuelvan éste al pueblo. La ciencia se nutre en el pueblo.
Escrito por Romeo Pérez
Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.