Cargando, por favor espere...
Este número irracional, como los demás números, surgió gracias al desarrollo económico de una sociedad en un determinado momento de la historia. Su conocimiento empírico comenzó cuando el hombre tuvo necesidad de calcular áreas o volúmenes de objetos curvilíneos, circulares o esféricos. En ese proceso de conocimiento, el hombre observó que, si relacionaba el perímetro de una circunferencia con su diámetro lograría encontrar el área de un círculo. Así fue como la práctica diaria le enseñó que la longitud de la circunferencia podía igualarse a tres veces la longitud del diámetro, más una cantidad muy pequeña de dígitos que se extendían indefinidamente.
En la búsqueda del área exacta del círculo, el hombre “se estrelló” con el problema de que no podía encontrar el último de esa serie de dígitos colocados después del punto decimal. Descubrió que no era posible encontrar el área exacta del círculo recurriendo solo a la geometría. Luchó incansablemente con el problema planteado, hasta que lo resolvió a finales del Siglo XIX, gracias al cálculo infinitesimal desarrollado por Isaac Newton, Pierre de Fermat, René Descartes y Gottfried Leibniz y a la teoría de conjuntos formalizada por el matemático alemán George Cantor.
La historia del número π, de acuerdo con el ingeniero químico Simón Reif Acherman, se divide en tres grandes períodos: el primero comienza en las antiguas civilizaciones sumeria, egipcia y china, que grabaron sus resultados en tablillas de arcilla y papiros, hasta el surgimiento del cálculo infinitesimal (mediados del Siglo XVII) con Fermat y Descartes; el segundo periodo comprende los aportes científicos y filosóficos de Newton y Leibniz; y el tercero y último periodo, abarca la mitad del Siglo XVIII hasta finales del XIX.
El conocimiento empírico egipcio del número π comenzó con las aproximaciones de hasta nueve dígitos, como lo muestra el papiro de Rhind: un valor aproximado de equivalente a 3.160493827. Pero la mejor aproximación al área del círculo se obtuvo en la cultura griega, con los matemáticos Eudoxo de Cnido y Arquímedes de Siracusa. Ellos se plantearon el problema de la cuadratura de la parábola y la cuadratura del círculo, es decir, el problema de encontrar el área de un segmento parabólico (región encerrada por una parábola y una línea recta) en un cuadrado, o encontrar el área de un círculo en un cuadrado.
Para resolver la cuadratura de la parábola y la del círculo, Eudoxo y Arquímedes emplearon el método por agotamiento o de exhaución y el de reducción al absurdo. Para la primera, comenzaron a dividir la región encerrada en una “infinidad” de triángulos cada vez más pequeños. Después sumaron el área de cada uno de los triángulos con el método de la progresión geométrica y encontraron el área del segmento parabólico. Para la segunda, Arquímedes construyó polígonos de lados 6, 12, 24, 48 y 96 dentro y fuera de la circunferencia y calculó el área de cada uno de los polígonos indicados. Al aumentar los lados de los polígonos, inscritos y circunscritos a la circunferencia de radio 1, Arquímedes, usando la ya conocida igualdad: donde P es el perímetro para cada lado n y D el diámetro del círculo, llegó al siguiente resultado: o lo que es lo mismo, a 3.140845<π<3.142857.
Como el lector ya observó, conforme el hombre iba perfeccionando sus métodos de investigación, también se acercaba más a la solución. Sin embargo, las condiciones materiales de su tiempo y el desarrollo de la matemática, todavía no daba el salto que se requería para encontrar el área exacta del círculo. En el Siglo II después de Cristo, el matemático Claudio Ptolomeo había mejorado la aproximación. Con un polígono de 120 lados, inscrito en una circunferencia, construyó una tabla de las cuerdas de un círculo subtendidas por arcos de medio grado, un grado y así sucesivamente, hasta arcos de 180 grados. Luego, usando el método de fracciones sexagesimales, pudo encontrar la aproximación: cuya expresión en decimales es 3.1416666667.
El hombre antiguo estuvo “muy cerca” de hallar el área del círculo. Sin embargo, como nos enseñaron en “las buenas escuelas”, el área del círculo con radio uno es un número irracional con un número infinito de dígitos que no son periódicos. Era imposible, pues, encontrar el valor de π con las herramientas matemáticas conocidas hasta ese momento.
En febrero de 2001 se publicaron los resultados de casi una década de trabajo del prometedor programa de investigación genética: Proyecto Genoma Humano, el cual logró descifrar el 90 por ciento del genoma humano.
La novela La Medición del Mundo, del filósofo y escritor alemán Daniel Kehlmann, se trata de una obra muy documentada, apasionante y amena, cuyo estilo está claramente influido por el realismo mágico.
Las distopías, en esencia, orientan a los espectadores en ese mismo sentido, es decir, al conformismo.
Cada 14 de marzo se celebra el a la Matemática. Esta fecha fue elegida en virtud de que hace alusión a 3.14, que es el valor aproximado del enigmático número Pi (π).
El hombre antiguo estuvo “muy cerca” de hallar el área del círculo. Sin embargo, como nos enseñaron en “las buenas escuelas”, el área del círculo con radio uno es un número irracional con un número infinito de dígitos que no son periódicos.
La intención es lograr un lente de material blando que logre un acercamiento, en un primer prototipo, de 32 por ciento con respecto a la visualización normal.
Los problemas de la humanidad se agudizarán; en primer lugar, por la falta de alimentos ya que, con suelos destruidos o empobrecidos.
Este sistema de producción agrícola forma un hábitat para la biodiversidad acuática de la zona y brinda un paraje paisajístico para residentes y turistas.
Pareciera contraintuitivo que alguien haga su vida al lado de grandes montañas que sacan humo y fuego, sin embargo, ese material que sacan por sus chimeneas hace que los suelos que los rodean sean fértiles...
El Coahuilasaurus lipani destacó por su hocico corto y profundo.
Un sistema puede definirse como un conjunto de elementos o variables que interactúan de manera coherente. Estos elementos pueden ser de tipo económico, técnico, social o ecológico, y forman parte de una estructura compleja.
Sirvan estos dos ejemplos para que los estudiantes mexicanos despierten su interés por el desarrollo histórico de las fórmulas matemáticas.
"Sólo siete países africanos (de 54) tienen una posibilitad de conseguir el objetivo", declaró Matshidiso Moeti, directora de la OMS para África, en una rueda de prensa en línea.
Heine logró demostrar que si una serie trigonométrica converge a una función continua en un intervalo dado, entonces la serie es única.
La investigación de Legendre se caracterizó por materializarse en la publicación de libros importantes para la enseñanza, entre las que destacan Elementos de geometría (1794) y Ensayos sobre la teoría de números (1798).
Jueces y magistrados aún sin validar por falta de requisitos académicos
Por desabasto de medicamentos, anuncian múltiples manifestaciones en el país
Batres revienta sesión de la SCJN y evita votación para deducción fiscal a Pegaso
De cara al Mundial, anuncian renovación de Línea 2 del Metro
Vecinos denuncian abuso de policías que se llevaron a trabajadores tras balacera en Iztapalapa
Omisión y opacidad en informe de México en Ginebra, acusan feministas
Escrito por Romeo Pérez
Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.