Cargando, por favor espere...

El espacio curvo de Riemann
Durante más de dos mil años el postulado de las paralelas, que formaba parte del cimiento de la geometría euclidiana, se mantuvo firme.
Cargando...

El espacio curvo de Riemann es de una dimensión mayor a tres, imperceptible a simple vista, pero su estudio nació a partir de la superficie curva de las dos dimensiones sobre la que caminamos diariamente. A partir de esta simple observación, los matemáticos Lobachevski y Riemann se preguntaron si el concepto de una superficie curva podría extenderse a una de dimensión mayor a tres, pero que también fuera curva. La respuesta fue afirmativa y así nacieron los espacios curvos de Lobachevski y de Riemann, aunque este último fue quien generalizó la idea a una hipersuperficie curva de n-1 dimensiones.

Durante más de dos mil años el postulado de las paralelas, que formaba parte del cimiento de la geometría euclidiana, se mantuvo firme ante los fuertes cuestionamientos de matemáticos reconocidos mundialmente. Pero fue hasta principios del Siglo XIX cuando dicho postulado comenzó a tambalearse, primero ante la crítica del matemático alemán Karl Gauss, quien a partir de 1792 comenzó a cuestionarlo con el método de reducción al absurdo. Éste lo llevó a encontrar geometrías diferentes a la de Euclides, pero sus pensamientos nunca fueron publicados. Fue el matemático ruso Nikolái Lobachevski quien en 1826, con el mismo método aplicado por Gauss 34 años atrás, demostró, en la Universidad Imperial de Kazán, la existencia de una nueva geometría: la  hiperbólica. Seis años después, en 1832, el matemático húngaro János Bolyai obtuvo un resultado similar al del geómetra ruso.

Sin embargo, la discusión sobre el postulado de las paralelas estaba incompleta y llegó el matemático alemán Bernhard Riemann para completarla en 1854. En un discurso pronunciado en la Universidad de Gotinga, frente a su asesor de tesis, Carl Gauss, difundió los fundamentos de una geometría generalizada que incluía no solo a la euclidiana, sino también a la geometría hiperbólica y la elíptica, esta última obtenida por él como un caso particular de su híper-espacio n-1 dimensional. Fue así como nació la geometría riemanniana, muy estudiada hoy en las facultades de ciencias.

Para comprender el espacio curvo de Riemann es importante que estudiemos, en primer lugar, el concepto de curvatura, definida como “la medida de cuánto una curva difiere de una recta”. Por ejemplo, en un plano euclidiano, la curvatura de una recta es cero; la curvatura de un círculo de radio R es la constante 1/R; en cambio, una curva como la carretera Chinantla-Tecomatlán, la curvatura en cada punto es diferente y va indicando cuán cerrada es la curva; pero cada curvatura puede aproximarse por una constante también. La respuesta está en el radio de la curvatura del círculo osculador (tangente) a la curva considerada.

Por lo tanto, el estudio del radio en la curvatura de una curva cualquiera comienza por encontrar el radio de la curvatura de un círculo como una relación entre la curvatura de un círculo de radio R dividido por el mismo radio. Ésta es una relación inversamente proporcional, ya que a menor radio del círculo, obtenemos mayor curvatura, es decir, la curvatura se asemeja a la forma que tienen las semillas de un pepino; mientras que a mayor radio del círculo, menor curvatura, es decir, la curvatura se asemeja a una recta. Otro ejemplo que ilustra esta descripción es fijándonos en dos circunferencias de radios distintos, una pequeña inscrita tangencialmente en la grande. Es claro que la circunferencia de radio pequeño tiene una curvatura más aguda, en comparación con la del radio mayor. De aquí se deduce que si el radio es muy grande, digamos tendiendo al infinito, entonces la curvatura es cero, mientras que si el radio es muy pequeño, la curvatura es muy aguda, es decir, está muy cerrada la circunferencia.

El círculo osculador, por otra parte, se refiere al círculo tangente escogido entre una infinidad de círculos tangentes a la curva considerada, el que más se ajusta a la curva, es decir, el que se parezca tanto como se quiera a la curva estudiada.

Por lo tanto, si entendemos los conceptos de radio de curvatura de una curva y de su círculo osculador, entenderemos la curvatura de una superficie y posteriormente la curvatura de un espacio.


Escrito por Romeo Pérez

Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.


Notas relacionadas

La Federación Internacional de Robótica proyecta que seguirá creciendo la demanda de robots industriales con la instalación de 600 mil robots nuevos en todo el mundo para el año 2024.

Hasta el último centavo del dinero destinado a fomentar el trabajo científico es arrancado para satisfacer los intereses más oscuros de la “Cuarta Transformación” (4T).

Einstein hizo lo mismo con la estructura del universo donde habitamos, al demostrar que es también un espacio curvo.

Su domesticación ha traído casi cien variedades de esta especie, dentro de las que se pueden encontrar plantas con las típicas hojas color verde y escarlata.

Ayer, el Telescopio Espacial James Webb reveló la imagen más clara hasta la fecha del universo primitivo, que se remonta a 13 mil millones de años, dijo la NASA el lunes.

El sustento del conocimiento matemático se desarrolló en la antigua Grecia; uno de los filósofos que contribuyó a su desarrollo fue Aristóteles, quien planteó las leyes básicas del pensamiento humano a fin de obtener deducciones válidas.

Médico y matemático con profundas convicciones católicas, con salud frágil toda su vida, publicó varias obras entre las que se encuentra Sobre la determinación de las raíces en las ecuaciones numéricas de cualquier grado.

Hace alrededor de 100 mil años se hicieron las primeras modificaciones a algunas herramientas que permitieron la sobrevivencia, y para lograrlo el lenguaje numérico fue fundamental.

Charles convence a su hija de que acepte los títulos al portador de una empresa “fantasma”, quien está controlada por Mossack y Fonseca

La sonda Chang'e 5 alunizó poco después de las 23:00 horas del martes tras descender de una nave orbital, según la Administración Nacional China del Espacio.

AMLO olvida que el desarrollo económico de un país está directamente relacionado con las inversiones en la investigación y la producción de ciencia y tecnología.

La tecnología hace posible que las ventas en línea lleguen a más personas, sin importar donde se encuentren; por lo que cada vez más usuarios de la red realizan compras a través de internet.

En nuestro país, el uso indiscriminado de fertilizantes químicos en la actividad agrícola se ha vuelto muy importante debido al empobrecimiento de los suelos.

Fue uno de los matemáticos políticos que apoyó decididamente la Revolución Francesa. En 1794 formó parte del comité de organización de la Ecole Centrale oles Travaux Rublics (Escuela Politécnica de París) donde escribió una de sus obras más famosas: Aplic

Julio Verne nació en Nantes, Francia, en 1828. Fue un brillante escritor y divulgador de la ciencia.