Cargando, por favor espere...

Tlaixaxiliztli
El espacio curvo de Riemann
Durante más de dos mil años el postulado de las paralelas, que formaba parte del cimiento de la geometría euclidiana, se mantuvo firme.


El espacio curvo de Riemann es de una dimensión mayor a tres, imperceptible a simple vista, pero su estudio nació a partir de la superficie curva de las dos dimensiones sobre la que caminamos diariamente. A partir de esta simple observación, los matemáticos Lobachevski y Riemann se preguntaron si el concepto de una superficie curva podría extenderse a una de dimensión mayor a tres, pero que también fuera curva. La respuesta fue afirmativa y así nacieron los espacios curvos de Lobachevski y de Riemann, aunque este último fue quien generalizó la idea a una hipersuperficie curva de n-1 dimensiones.

Durante más de dos mil años el postulado de las paralelas, que formaba parte del cimiento de la geometría euclidiana, se mantuvo firme ante los fuertes cuestionamientos de matemáticos reconocidos mundialmente. Pero fue hasta principios del Siglo XIX cuando dicho postulado comenzó a tambalearse, primero ante la crítica del matemático alemán Karl Gauss, quien a partir de 1792 comenzó a cuestionarlo con el método de reducción al absurdo. Éste lo llevó a encontrar geometrías diferentes a la de Euclides, pero sus pensamientos nunca fueron publicados. Fue el matemático ruso Nikolái Lobachevski quien en 1826, con el mismo método aplicado por Gauss 34 años atrás, demostró, en la Universidad Imperial de Kazán, la existencia de una nueva geometría: la  hiperbólica. Seis años después, en 1832, el matemático húngaro János Bolyai obtuvo un resultado similar al del geómetra ruso.

Sin embargo, la discusión sobre el postulado de las paralelas estaba incompleta y llegó el matemático alemán Bernhard Riemann para completarla en 1854. En un discurso pronunciado en la Universidad de Gotinga, frente a su asesor de tesis, Carl Gauss, difundió los fundamentos de una geometría generalizada que incluía no solo a la euclidiana, sino también a la geometría hiperbólica y la elíptica, esta última obtenida por él como un caso particular de su híper-espacio n-1 dimensional. Fue así como nació la geometría riemanniana, muy estudiada hoy en las facultades de ciencias.

Para comprender el espacio curvo de Riemann es importante que estudiemos, en primer lugar, el concepto de curvatura, definida como “la medida de cuánto una curva difiere de una recta”. Por ejemplo, en un plano euclidiano, la curvatura de una recta es cero; la curvatura de un círculo de radio R es la constante 1/R; en cambio, una curva como la carretera Chinantla-Tecomatlán, la curvatura en cada punto es diferente y va indicando cuán cerrada es la curva; pero cada curvatura puede aproximarse por una constante también. La respuesta está en el radio de la curvatura del círculo osculador (tangente) a la curva considerada.

Por lo tanto, el estudio del radio en la curvatura de una curva cualquiera comienza por encontrar el radio de la curvatura de un círculo como una relación entre la curvatura de un círculo de radio R dividido por el mismo radio. Ésta es una relación inversamente proporcional, ya que a menor radio del círculo, obtenemos mayor curvatura, es decir, la curvatura se asemeja a la forma que tienen las semillas de un pepino; mientras que a mayor radio del círculo, menor curvatura, es decir, la curvatura se asemeja a una recta. Otro ejemplo que ilustra esta descripción es fijándonos en dos circunferencias de radios distintos, una pequeña inscrita tangencialmente en la grande. Es claro que la circunferencia de radio pequeño tiene una curvatura más aguda, en comparación con la del radio mayor. De aquí se deduce que si el radio es muy grande, digamos tendiendo al infinito, entonces la curvatura es cero, mientras que si el radio es muy pequeño, la curvatura es muy aguda, es decir, está muy cerrada la circunferencia.

El círculo osculador, por otra parte, se refiere al círculo tangente escogido entre una infinidad de círculos tangentes a la curva considerada, el que más se ajusta a la curva, es decir, el que se parezca tanto como se quiera a la curva estudiada.

Por lo tanto, si entendemos los conceptos de radio de curvatura de una curva y de su círculo osculador, entenderemos la curvatura de una superficie y posteriormente la curvatura de un espacio.


Escrito por Romeo Pérez

Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.


Notas relacionadas

abs.jpg

¿Cuál es el carácter distintivo de la dialéctica? Pongamos el caso de la guerra, ¿es nociva o es perjudicial? Desde el punto de vista de la dialéctica, es indispensable saber qué guerra se está planteando. Aquí la verdad siempre es concreta.

La ciencia de la comunicación humana, de Wilbur Schramm (I de II)

Este libro compila los estudios que 11 psicólogos, sociólogos y antropólogos dedicaron al fenómeno de la comunicación de masas en Estados Unidos.

La matemática no lo demuestra todo

Desde el inicio de la cuarta revolución matemática, en las primeras décadas del Siglo XX, el formalismo hilbertiano ha caracterizado el trabajo matemático hasta el día de hoy. Este paradigma histórico del formalismo se caracteriza por...

Estiben.jpg

Con la muerte de Arquímedes se inicia el ocaso de los griegos, en el año 146 a.C. los romanos invadieron Cartago y el Mediterráneo, menos Egipto.

venus.jpg

El estudio de Venus en la década de 1960 alertó a la comunidad científica sobre las consecuencias ambientales por el aumento de dióxido de carbono (CO2) en la atmósfera terrestre.

TORTILLA.jpg

Lejos de eliminar los productos “exóticos”, el Presidente debería impulsar y asegurar el acceso a ellos para todos los mexicanos.

El naturalista, el matemático y la medición del mundo

La novela La Medición del Mundo, del filósofo y escritor alemán Daniel Kehlmann, se trata de una obra muy documentada, apasionante y amena, cuyo estilo está claramente influido por el realismo mágico.

luna.jpg

Julio Verne nació en Nantes, Francia, en 1828. Fue un brillante escritor y divulgador de la ciencia.

adn.jpg

Los genes son los responsables de la conformación del genotipo

Investigadores crean aparato inclusivo para que débiles visuales escuchen eclipse del 8 de abril

El eclipse solar total será el próximo 8 de abril.

teatro.jpg

Invadiendo el mundo, es una cinta que exhibe con nitidez escenas racistas sobresalientes como la que provocó la muerte del afroamericano George Floyd en Minneapolis.

tla.jpg

El cero, concebido como ausencia de cantidad, no existía en el mundo griego, puesto que no creían en el no ser; su presencia se vino a establecer muy paulatinamente.

El capitalismo y su incompatibilidad con la Ecología

Aquí una síntesis de una cercana catástrofe ambiental y la urgencia de replantear nuestro enfoque económico para garantizar la supervivencia a largo plazo de la vida como la conocemos en nuestro planeta.

De la Colonia al capitalismo

Si los campesinos quieren mejorar sus condiciones se debe insistir en la tecnificación del campo mexicano, en la menor dependencia de países extranjeros, en la tecnificación agrícola y...

ba.jpg

En recientes días hemos escuchado sobre la “nueva amenaza” que acecha las zonas costeras del Golfo de México, la superbacteria “carnívora” Vibro vilmificus; la mayoría de sus víctimas mortales fueron pacientes con problemas hepáticos.