Cargando, por favor espere...
Cavalieri y Torricelli, ambos discípulos de Galileo, hicieron aportaciones significativas al cálculo infinitesimal. El primero desarrolló el método de los indivisibles, una herramienta matemática que sirvió para calcular: 1) el área de figuras planas por medio de suma de infinitos segmentos paralelos a la base y 2) volumen de sólidos por medio de suma de infinitas superficies planas paralelas a la base. Esta forma ingeniosa de encontrar áreas y volúmenes por Cavalieri fue retomada en el Siglo XIX por el matemático alemán Bernhard Riemann para expresar la integral por medio del límite de su suma, conocida hoy como suma de Riemann.
El método de los indivisibles creado por Cavalieri le permitió encontrar el área existente entre un triángulo parabólico y el volumen de una pirámide. Además, pudo encontrar de manera precisa áreas bajo curvas de tipo parabólico, cúbico hasta curvas de grado nueve con el uso de la fórmula , s=1, 2, 3,…,9 y , proporcionado por él. Fórmula que se generalizaría después con los matemáticos franceses Fermat, Pascal y Roberval para el cálculo de áreas de curvas de tipo y=xn, con n en el conjunto de los números naturales.
El segundo italiano es reconocido por el uso de series convergentes y divergentes para el cálculo del volumen de un sólido de revolución, conocido como trompeta de Torricelli. Este sólido cumple con la característica de que el área de su superficie es infinita, pero su volumen finito. Para simplificar, considérese la curva xy=1. Es inmediato notar que tanto el área bajo la curva y=1/x como el área de la superficie de revolución obtenida al girar dicha curva alrededor del eje X es infinita, pero el volumen de sólido de revolución es finito. Para demostrar esta afirmación tómese como integrandos, respectivamente, las funciones y=1/x y y=/x^2 e intégrese en el intervalo ,. Desde luego que Torricelli no usó el cálculo integral como la conocemos hoy, pues esta herramienta matemática surgiría después con Leibniz y Newton. Las herramientas usadas por Torricelli fueron las series y el método de los indivisibles proporcionado ya por Cavalieri. Para ello, Torricelli inscribió infinitos cilindros en la trompeta, uno dentro del otro para cada x en el eje de las abscisas. Es claro que el volumen de cada cilindro inscrito iba disminuyendo conforme el valor de x crecía hacia el infinito. Para encontrar el volumen de los cilindros, Torricelli recurrió al método de los indivisibles de Cavalieri. Luego usó las series para sumar los volúmenes de los diferentes cilindros y demostró que la serie convergía, es decir, el volumen era finito. La serie resulta convergente, debido a que el volumen de la trompeta de Torricelli es acotado por arriba por la suma de los volúmenes de los cilindros de altura unidad. Por lo tanto, si acotamos el volumen de los cilindros de radio 1/x, con x=1, 2, 3,…, n, … y altura unidad, el resultado se sigue inmediatamente. En efecto, el volumen resultó ser menos estricto que la serie de los inversos de los cuadrados, la cual ya se sabía que convergía, pues es posible acotarla superiormente por una serie telescópica, la cual desde luego era convergente. Así fue como Torricelli demostró que el volumen de la trompeta que lleva su nombre era finito y menor a 2 π. Para demostrar la infinitud del área de la superficie, Torricelli nuevamente recurrió a las series, esta vez demostró que el área de la superficie era mayor que la serie armónica estudiada ya por Nicolás de Oresme (mediados del Siglo XIV), la cual es divergente. Por lo tanto, al ser el área de la superficie mayor que la serie armónica, resulta ser infinita.
Surge aquí la pregunta de todos, ¿existirá un sólido cuyo volumen sea infinito, pero el área de su superficie sea finita? La respuesta es no. No existe un sólido con esas características. La demostración la proporcionaré en mi siguiente colaboración.
Cavalieri y Torricelli pudieron usar las series convergentes y divergentes gracias al desarrollado concepto del infinito adquirido ya en aquella época en los trabajos de Pietro Mengoli sobre la serie telescópica y de Nicolás de Oresme sobre la serie armónica.
El empresario advirtió la existencia de un gran peligro de que las redes sociales se dividan entre extrema derecha y extrema izquierda, lo que generaría "más odio y división en nuestra sociedad".
El genio soviético fue quien lo hizo, en 1928, y, con éste, nació formalmente la probabilidad como la conocemos en la actualidad.
México, país extraordinariamente rico en diversidad biológica, alberga formaciones importantes de microbialitos
Además de generar beneficios importantes para los suelos, la materia orgánica contribuye al amortiguamiento de agentes contaminantes. Sin embargo, las actividades humanas han provocado que en el 42% de nuestro territorio los suelos estén casi inservibles.
El Presidente López Obrador desea transformar al modelo educativo actual del CIDE en brazo ideológico de la 4ª T, pero se limita a imponer un director obsecuente sin precisar qué tipo de economía reemplazará al “neoclasisismo” y al “neoliberalismo”.
Von Neumann fue considerado como superdotado, ya que desde los seis años ya sabía dividir, hablar griego antiguo, francés, alemán y latín, y a sus ocho años ya dominaba el cálculo diferencial e integral.
En la ruleta los resultados son equiprobables, no hay predilección por ningún número o color.
No es raro encontrar bosques enfermos: aquéllos con hojas amarillas o cafés, troncos llenos de grumos resinosos, follaje manchado y, en los casos más graves, la presencia masiva de plantas o insectos parásitos.
Las matemáticas están íntimamente ligadas a la sociedad y a la naturaleza. De hecho, las necesidades prácticas de una sociedad influyen en el desarrollo de la matemática, y entre más desarrollada esté la sociedad, más desarrollada estará esta ciencia.
El aporte matemático de Arthur Cayley es impresionante e innovador, sus ideas visionarias han contribuido a desarrollar la matemática moderna.
Este filme aborda la vida de la científica marina Sophia (Berenice Bejo), quien se dedica a estudiar el comportamiento de la especie más depredadora de los océanos: el tiburón blanco.
En lo que va de 2019 México ha registrado 74 mil 277 casos de dengue, cifra que lo ubica en el cuarto lugar de América Latina, solo después de Brasil (un millón 958 mil 31), Nicaragua (94 mil 513) y Colombia (84 mil 644).
La polinización es considerada fundamental para el bienestar humano. Sin embargo, esta actividad está en peligro por la baja en las poblaciones de polinizadores dado el calentamiento global, y la degradación del aire, el agua y el suelo.
El Meteorito de Allende abrió “una ventana para entender el origen del Sistema Solar” y junto a otro célebre meteorito “mexicano” de hace 66 millones de años en el área submarina de Chicxulub, ha aportado importantes conocimientos científicos sobre la historia de la Tierra.
Los médicos podrían comenzar a recibir la vacuna a finales de mes, dijo la viceprimera ministra, Tatyana Golikova, en la reunión.
Trump confirma que sí impondrá aranceles del 25% a productos mexicanos
Hermana de Martí Batres y Morena buscan legalizar despojos en CDMX
¡Arancel Vs Arancel! Trudeau promete contramedidas
México presente en Foro Económico Mundial de Davos 2025
Desplazados de San Pedro El Alto, entre una crisis humanitaria y el desdén del gobernador
Inicia deportación migratoria tras decreto de Trump
Escrito por Romeo Pérez
Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.