Cargando, por favor espere...
Cavalieri y Torricelli, ambos discípulos de Galileo, hicieron aportaciones significativas al cálculo infinitesimal. El primero desarrolló el método de los indivisibles, una herramienta matemática que sirvió para calcular: 1) el área de figuras planas por medio de suma de infinitos segmentos paralelos a la base y 2) volumen de sólidos por medio de suma de infinitas superficies planas paralelas a la base. Esta forma ingeniosa de encontrar áreas y volúmenes por Cavalieri fue retomada en el Siglo XIX por el matemático alemán Bernhard Riemann para expresar la integral por medio del límite de su suma, conocida hoy como suma de Riemann.
El método de los indivisibles creado por Cavalieri le permitió encontrar el área existente entre un triángulo parabólico y el volumen de una pirámide. Además, pudo encontrar de manera precisa áreas bajo curvas de tipo parabólico, cúbico hasta curvas de grado nueve con el uso de la fórmula , s=1, 2, 3,…,9 y
, proporcionado por él. Fórmula que se generalizaría después con los matemáticos franceses Fermat, Pascal y Roberval para el cálculo de áreas de curvas de tipo y=xn, con n en el conjunto de los números naturales.
El segundo italiano es reconocido por el uso de series convergentes y divergentes para el cálculo del volumen de un sólido de revolución, conocido como trompeta de Torricelli. Este sólido cumple con la característica de que el área de su superficie es infinita, pero su volumen finito. Para simplificar, considérese la curva xy=1. Es inmediato notar que tanto el área bajo la curva y=1/x como el área de la superficie de revolución obtenida al girar dicha curva alrededor del eje X es infinita, pero el volumen de sólido de revolución es finito. Para demostrar esta afirmación tómese como integrandos, respectivamente, las funciones y=1/x y y=/x^2 e intégrese en el intervalo ,. Desde luego que Torricelli no usó el cálculo integral como la conocemos hoy, pues esta herramienta matemática surgiría después con Leibniz y Newton. Las herramientas usadas por Torricelli fueron las series y el método de los indivisibles proporcionado ya por Cavalieri. Para ello, Torricelli inscribió infinitos cilindros en la trompeta, uno dentro del otro para cada x en el eje de las abscisas. Es claro que el volumen de cada cilindro inscrito iba disminuyendo conforme el valor de x crecía hacia el infinito. Para encontrar el volumen de los cilindros, Torricelli recurrió al método de los indivisibles de Cavalieri. Luego usó las series para sumar los volúmenes de los diferentes cilindros y demostró que la serie convergía, es decir, el volumen era finito. La serie resulta convergente, debido a que el volumen de la trompeta de Torricelli es acotado por arriba por la suma de los volúmenes de los cilindros de altura unidad. Por lo tanto, si acotamos el volumen de los cilindros de radio 1/x, con x=1, 2, 3,…, n, … y altura unidad, el resultado se sigue inmediatamente. En efecto, el volumen resultó ser menos estricto que la serie de los inversos de los cuadrados, la cual ya se sabía que convergía, pues es posible acotarla superiormente por una serie telescópica, la cual desde luego era convergente. Así fue como Torricelli demostró que el volumen de la trompeta que lleva su nombre era finito y menor a 2 π. Para demostrar la infinitud del área de la superficie, Torricelli nuevamente recurrió a las series, esta vez demostró que el área de la superficie era mayor que la serie armónica estudiada ya por Nicolás de Oresme (mediados del Siglo XIV), la cual es divergente. Por lo tanto, al ser el área de la superficie mayor que la serie armónica, resulta ser infinita.
Surge aquí la pregunta de todos, ¿existirá un sólido cuyo volumen sea infinito, pero el área de su superficie sea finita? La respuesta es no. No existe un sólido con esas características. La demostración la proporcionaré en mi siguiente colaboración.
Cavalieri y Torricelli pudieron usar las series convergentes y divergentes gracias al desarrollado concepto del infinito adquirido ya en aquella época en los trabajos de Pietro Mengoli sobre la serie telescópica y de Nicolás de Oresme sobre la serie armónica.
Un estudio identificó a cinco pacientes que desarrollaron la enfermedad de Alzheimer “por contagio”, quienes durante su infancia recibieron un tratamiento hormonal de crecimiento a fin de modificar sus estaturas.
"Sólo siete países africanos (de 54) tienen una posibilitad de conseguir el objetivo", declaró Matshidiso Moeti, directora de la OMS para África, en una rueda de prensa en línea.
Creer que las verdades matemáticas y objetos matemáticos tienen existencia independiente de la mente humana no tiene fundamento; desde Pitágoras hasta algunos matemáticos más contemporáneos creen en esta independencia.
El desarrollo de la investigación matemática ha sido tan espectacular, que abarcar todo el conocimiento actual de la matemática se ha vuelto imposible para cualquier ser humano.
Las aves han desempeñado varios papeles fundamentales a lo largo de la historia humana, desde ser fuente crucial en los ecosistemas, hasta servir como objeto de tranquilidad a la cansada y ajetreada alma de los trabajadores.
El famoso Axioma de elección juega un poco con la intuición humana, ya que demuestra que todo conjunto puede ser bien ordenado, aunque no se muestra cuál es ese orden.
Se sabe que Arquímedes calculó el valor del número irracional π a 11 decimales cuando se aproximó al área de un círculo de radio uno.
El arribo de la mariposa constituye uno de los mayores atractivos turísticos de la entidad, el cual genera empleo y recursos económicos.
El aporte matemático de Arthur Cayley es impresionante e innovador, sus ideas visionarias han contribuido a desarrollar la matemática moderna.
Julio Verne nació en Nantes, Francia, en 1828. Fue un brillante escritor y divulgador de la ciencia.
Este fenómeno se debió al continuo uso de enormes cantidades de combustibles fósiles en todo el mundo.
El hombre antiguo estuvo “muy cerca” de hallar el área del círculo. Sin embargo, como nos enseñaron en “las buenas escuelas”, el área del círculo con radio uno es un número irracional con un número infinito de dígitos que no son periódicos.
La ciencia no es buena ni mala en sí misma, es una herramienta que puede utilizarse de distintas maneras y con distintos propósitos; puede resolver problemas, pero también puede crearlos.
Los artrópodos fueron el grupo más abundante desde que la vida animal apareció en la Tierra
Con todos los avances y beneficios que la IA ha aportado a la ciencia, también surgen desafíos y preocupaciones; ahora hay preguntas sobre el papel del científico en este nuevo panorama.
Escrito por Romeo Pérez
Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.