Cargando, por favor espere...

La negación dialéctica y el espacio curvo de Riemann
Así fue como nacieron las nuevas geometrías, que describen con más exactitud el universo donde vivimos, sin omitir y rechazar a la geometría euclidiana.
Cargando...

La negación –decía Vladimir Illich Uliánov Lenin– es dialéctica únicamente cuando sirve de fuente de desarrollo, cuando conserva y mantiene todo lo positivo del anterior grado de desarrollo. Las negaciones de este tipo pueden encontrarse también en las ciencias y, sobre todo, en las matemáticas, ya que éstas son las más abstractas entre todas las ciencias aplicadas a la investigación de la naturaleza. Precisamente por esta característica, las contradicciones y las negaciones dialécticas son más fáciles de encontrar, decía el matemático francés Gastón Casanova en su obra La matemática y el materialismo dialéctico.

En efecto, las matemáticas no solamente contienen negaciones lógicas, sino también y sobre todo negaciones y contradicciones dialécticas, como las que surgieron del quinto postulado de Euclides para dar origen a las geometrías no-euclidianas, tales como la geometría hiperbólica de Nikolái Lobachevski y Janos Bolyai y la geometría elíptica de Bernhard Riemann, ramas de la matemática que demuestran que el espacio donde vivimos es curvo y no plano, como se consideró durante más de dos mil años.

Al percatarse que la geometría euclidiana no describía algunos fenómenos de la naturaleza, o no los demostraba completamente, los matemáticos arriba citados comenzaron a cuestionar la validez de los axiomas y postulados sobre los que descansaba esa geometría. Pronto notaron que había un error y que era necesario revisar el quinto postulado de Euclides, es decir el de las paralelas, el cual afirmaba que dos rectas p y q pueden ser paralelas únicamente si la suma de los ángulos internos que forman con una secante es igual a 180 grados. La primera negación la hicieron, de manera independiente, el ruso Lobachevski, en 1826, y el húngaro Janos Bolyai, en 1831: que las rectas p y q pueden ser también paralelas si la suma de los ángulos internos que forman con una secante es inferior a 180 grados, lo que implica que hay una infinidad de rectas que pasan por el mismo punto y todas son paralelas a la recta dada. La segunda negación fue descubierta por el matemático alemán Riemman en 1854: que las rectas p y q nunca son paralelas si la suma de los ángulos internos que forman con una secante es mayor a 180 grados, es decir, la existencia de una infinidad de rectas que pasan por un mismo punto y ninguna es paralela a la recta dada.

Tanto Lobachevski como Riemann tuvieron que hacer uso de la práctica para demostrar sus afirmaciones. El primero, cuando observó un triángulo astronómico cuyos vértices estaba “puestos” en el Sol, la Tierra y la estrella Sirio y encontró que la suma de los ángulos interiores de aquel triángulo era menor a 180 grados. El segundo comprobó su teoría cuando observó que dos rectas paralelas (180 grados) levantadas desde el ecuador terrestre hacia el Polo Norte se intersectaban. Al sumar los ángulos interiores del triángulo formado, demostró que era mayor a 180 grados.

Así fue como nacieron las nuevas geometrías, que describen con más exactitud el universo donde vivimos, sin omitir y rechazar a la geometría euclidiana. Ésta fue superada por una negación dialéctica para dar origen a las geometrías hiperbólica y elíptica.

Ahora bien, si analizamos con mucho detenimiento las tres geometrías, la euclidiana, la hiperbólica y la elíptica, observaremos inmediatamente que son contradictorias, pues la primera afirma que hay una y solo una recta paralela a la recta dada; la segunda, que hay una infinidad de paralelas, y la tercera y la última que no hay paralelas, que todas cortan a la recta dada. ¿Cuál es, entonces, la geometría que mejor describe al universo? ¿Es posible obtener una síntesis dialéctica de las tres geometrías mencionadas y que describa con más exactitud el universo en el que vivimos? La respuesta no es fácil, sin embargo hay ejemplos que demuestran que las tres geometrías originan una nueva. El matemático Riemann fue quien, al usar la concepción infinitesimal de la geometría, descubrió la existencia de un nuevo espacio –el espacio curvo de Riemann– que ayudaría posteriormente a Albert Einstein en la creación de su espacio curvo, conocido hoy como el espacio-tiempo.


Escrito por Romeo Pérez

Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.


Notas relacionadas

Mientras el trabajo matemático tiene reglas, axiomas, y su libertad está en función de estar gobernado por sistemas formales; en el trabajo filosófico...

El hábito tan frecuente de beber café ha traído consigo una gran polémica acerca de si es bueno o malo beber café. Ante esto, múltiples investigaciones se han centrado en responder tal cuestión

Para la antigua cultura griega, los números naturales podían tener dos realizaciones, una como elemento de medición (lo llamaban magnitud) y otra como elemento de conteo.

"Sólo siete países africanos (de 54) tienen una posibilitad de conseguir el objetivo", declaró Matshidiso Moeti, directora de la OMS para África, en una rueda de prensa en línea.

Sirvan estos dos ejemplos para que los estudiantes mexicanos despierten su interés por el desarrollo histórico de las fórmulas matemáticas.

El hombre antiguo estuvo “muy cerca” de hallar el área del círculo. Sin embargo, como nos enseñaron en “las buenas escuelas”, el área del círculo con radio uno es un número irracional con un número infinito de dígitos que no son periódicos.

Criticó al racionalismo al afirmar que la razón humana debe seguir las razones del corazón por medio de la gracia divina en la fe cristiana, convirtiéndose en un apologista del cristianismo, dando inicio a la corriente filosófica del existencialismo.

El famoso Axioma de elección juega un poco con la intuición humana, ya que demuestra que todo conjunto puede ser bien ordenado, aunque no se muestra cuál es ese orden.

Pareciera contraintuitivo que alguien haga su vida al lado de grandes montañas que sacan humo y fuego, sin embargo, ese material que sacan por sus chimeneas hace que los suelos que los rodean sean fértiles...

Las matemáticas están íntimamente ligadas a la sociedad y a la naturaleza. De hecho, las necesidades prácticas de una sociedad influyen en el desarrollo de la matemática, y entre más desarrollada esté la sociedad, más desarrollada estará esta ciencia.

Los nuevos ambientes activan en nuestro organismo la producción de dopamina, sustancia que promueve el aprendizaje asociativo.

“El paciente podrá hacer llamadas telefónicas, manejar una computadora o comunicarse sin la necesidad de mover sus propios músculos, que actualmente están comprometidos", afirmó el multimillonario Elon Musk.

La Nochebuena era una flor predilecta para los aztecas, zapotecas, zoques, chontales y totonacas.

Svante Pääbo logró secuenciar el ADN de los neandertales, la especie de homínido más emparentada con los seres humanos actuales, y que se extinguió hace 30 mil años.

El volcán Popocatépetl se formó hace 23 mil años sobre los restos de otros volcanes. Desde entonces presenta actividad de manera intermitente, Tras estar inactivo 67 años, "despertó" en 1994.