Cargando, por favor espere...

La negación dialéctica y el espacio curvo de Riemann
Así fue como nacieron las nuevas geometrías, que describen con más exactitud el universo donde vivimos, sin omitir y rechazar a la geometría euclidiana.
Cargando...

La negación –decía Vladimir Illich Uliánov Lenin– es dialéctica únicamente cuando sirve de fuente de desarrollo, cuando conserva y mantiene todo lo positivo del anterior grado de desarrollo. Las negaciones de este tipo pueden encontrarse también en las ciencias y, sobre todo, en las matemáticas, ya que éstas son las más abstractas entre todas las ciencias aplicadas a la investigación de la naturaleza. Precisamente por esta característica, las contradicciones y las negaciones dialécticas son más fáciles de encontrar, decía el matemático francés Gastón Casanova en su obra La matemática y el materialismo dialéctico.

En efecto, las matemáticas no solamente contienen negaciones lógicas, sino también y sobre todo negaciones y contradicciones dialécticas, como las que surgieron del quinto postulado de Euclides para dar origen a las geometrías no-euclidianas, tales como la geometría hiperbólica de Nikolái Lobachevski y Janos Bolyai y la geometría elíptica de Bernhard Riemann, ramas de la matemática que demuestran que el espacio donde vivimos es curvo y no plano, como se consideró durante más de dos mil años.

Al percatarse que la geometría euclidiana no describía algunos fenómenos de la naturaleza, o no los demostraba completamente, los matemáticos arriba citados comenzaron a cuestionar la validez de los axiomas y postulados sobre los que descansaba esa geometría. Pronto notaron que había un error y que era necesario revisar el quinto postulado de Euclides, es decir el de las paralelas, el cual afirmaba que dos rectas p y q pueden ser paralelas únicamente si la suma de los ángulos internos que forman con una secante es igual a 180 grados. La primera negación la hicieron, de manera independiente, el ruso Lobachevski, en 1826, y el húngaro Janos Bolyai, en 1831: que las rectas p y q pueden ser también paralelas si la suma de los ángulos internos que forman con una secante es inferior a 180 grados, lo que implica que hay una infinidad de rectas que pasan por el mismo punto y todas son paralelas a la recta dada. La segunda negación fue descubierta por el matemático alemán Riemman en 1854: que las rectas p y q nunca son paralelas si la suma de los ángulos internos que forman con una secante es mayor a 180 grados, es decir, la existencia de una infinidad de rectas que pasan por un mismo punto y ninguna es paralela a la recta dada.

Tanto Lobachevski como Riemann tuvieron que hacer uso de la práctica para demostrar sus afirmaciones. El primero, cuando observó un triángulo astronómico cuyos vértices estaba “puestos” en el Sol, la Tierra y la estrella Sirio y encontró que la suma de los ángulos interiores de aquel triángulo era menor a 180 grados. El segundo comprobó su teoría cuando observó que dos rectas paralelas (180 grados) levantadas desde el ecuador terrestre hacia el Polo Norte se intersectaban. Al sumar los ángulos interiores del triángulo formado, demostró que era mayor a 180 grados.

Así fue como nacieron las nuevas geometrías, que describen con más exactitud el universo donde vivimos, sin omitir y rechazar a la geometría euclidiana. Ésta fue superada por una negación dialéctica para dar origen a las geometrías hiperbólica y elíptica.

Ahora bien, si analizamos con mucho detenimiento las tres geometrías, la euclidiana, la hiperbólica y la elíptica, observaremos inmediatamente que son contradictorias, pues la primera afirma que hay una y solo una recta paralela a la recta dada; la segunda, que hay una infinidad de paralelas, y la tercera y la última que no hay paralelas, que todas cortan a la recta dada. ¿Cuál es, entonces, la geometría que mejor describe al universo? ¿Es posible obtener una síntesis dialéctica de las tres geometrías mencionadas y que describa con más exactitud el universo en el que vivimos? La respuesta no es fácil, sin embargo hay ejemplos que demuestran que las tres geometrías originan una nueva. El matemático Riemann fue quien, al usar la concepción infinitesimal de la geometría, descubrió la existencia de un nuevo espacio –el espacio curvo de Riemann– que ayudaría posteriormente a Albert Einstein en la creación de su espacio curvo, conocido hoy como el espacio-tiempo.


Escrito por Romeo Pérez

Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.


Notas relacionadas

Ingenuity dispone de dos cámaras, una en blanco y negro para la navegación y otra en color, que está orientada para tomar imágenes del terreno.

Existe una gran variedad de patrones que "evocan sensaciones dinámicas conscientes de movimiento ilusorio, a pesar de ser estático", explicaron los especialistas en su más reciente estudio.

Hay quien dice que algo o está vivo o está muerto; sin embargo, todo lo que empieza a vivir comienza a morir al mismo tiempo y todo lo inerte es germen de la vida, porque al final, la vida también es materia...

“Estamos ante la presencia del gobierno que intenta ver como accidentes, lo que más bien han sido tragedias provocadas por la ausencia de mantenimiento”, denunció Andrés Atayde, presidente del PAN.

El equipo de la misión señaló que continúa trabajando para mantener operativa a la nave Voyager 1

Los modos del pensamiento matemático influyen en su hacer, el Siglo XX ha sido testigo de al menos dos formas de este hacer, con marcada influencia ideológica.

El club de los matemáticos está constituido por un conjunto de seres humanos con alta formación matemática y capaces de inventar nuevos teoremas.

Alan Turing no fue un estudiante brillante, pero si talentoso, perseverante en los problemas que quería resolver. Se hizo famoso cuando inventó una máquina capaz de descifrar los códigos secretos de comunicación usados en la SGM.

Fueron 5,504 especies previamente desconocidas de virus las que se identificaron, entre ellas, al 'Taraviricota', que podría ser el eslabón perdido en la evolución de los virus ARN.

Quizá la principal causa de la escasa participación de las mujeres en la ciencia sean los estereotipos de género que imperan en la sociedad y que dictan que las mujeres no cuentan con la capacidad o el derecho para hacer investigación.

Mirar directamente al Sol durante un eclipse puede causar daños irreversibles en la retina, incluso sin sentir dolor; como sucedió en 1991.

Se observaron más microplásticos en los polvos atmosféricos cerca de los centros industriales, comerciales y urbanos como: Tlalnepantla, Iztapalapa y La Merced.

Fue uno de los matemáticos políticos que apoyó decididamente la Revolución Francesa. En 1794 formó parte del comité de organización de la Ecole Centrale oles Travaux Rublics (Escuela Politécnica de París) donde escribió una de sus obras más famosas: Aplic

Las ideas Kantianas empiezan a ser cuestionadas; uno de sus críticos más importantes fue Bertrand Russell, quien intentó demostrar que la aritmética no era parte de la intuición A priori del tiempo, como manifestaba Immanuel Kant.

A bordo del cohete Centaur, de la empresa United Launch Alliance (ULA), viajan cinco robots diseñados por la UNAM, mismos que podrán desplazarse de manera autónoma por el suelo de la luna.