Cargando, por favor espere...
Hasta el Siglo XIX, los objetos matemáticos estaban ligados a problemas concretos asociados a hechos reales, para ello solo era necesario aceptar el infinito aristotélico (potencial) en el trabajo matemático. Después de los infinitos números actualmente es posible concebir como un todo (en acto), usando el axioma del conjunto infinito, la existencia del número infinito el cual no representa ningún objeto concreto, ni fenómeno físico alguno; sin embargo, representa la génesis que cambió la esencia de la matemática. Aunque las ideas conjuntistas iniciales fueron concebidas por Bernhard Riemann y Richard Dedekind, se reconoce que el matemático que consolidó y sentó las bases para la axiomatización de la teoría de conjuntos fue el ruso George Cantor, quien nació el tres de marzo de 1845, en San Petersburgo. En 1856, la familia Cantor, de origen judío, se trasladó a Alemania (Fráncfort). Desde sus primeros años escolares destacaron sus cualidades matemáticas, estaba decidido a estudiar matemáticas, sin embargo, su padre lo envió a estudiar ingeniería al Politécnico de Zúrich. Finalmente, su padre permitió que su hijo estudiara matemática y en 1862 se pasó a la Universidad de Berlín, donde tuvo como maestros a Karl Weiertrass y Leopold Kronecker. En 1867 obtuvo su doctorado por la Universidad de Berlín.
En 1869, George Cantor comenzó a trabajar en la Universidad de Halle, donde desarrolló sus ideas sobre el infinito. En 1874 se casó con Vally Guttmann, con quien tuvo seis hijos. En este año apareció su artículo Sobre una propiedad característica de la totalidad de los números reales algebraicos; ahí enunció por primera vez sus ideas del infinito. En 1878 publicó Una contribución a la teoría de variedades. En la época, variedad era lo que conceptualmente hoy conocemos como conjunto. En 1883 publicó Fundamentos para la teoría general de la variedad, consolidando sus revolucionarias ideas sobre el infinito. Sin embargo, las ideas de George Cantor sufrirían rechazo por la comunidad matemática, sobre todo de Leopold Kronecker, quien lo tildó de “científico charlatán” y “corruptor de juventudes”. Producto de estas disputas matemáticas, sufrió ataques depresivos que en 1884 lo obligaron a abandonar la investigación matemática por más de cinco años. En 1890, George Cantor fue elegido primer presidente de la Unión Matemática Alemana. En 1892 publicó Sobre una cuestión elemental de la teoría de variedades, obra con la que demostró que los números reales no pueden ser contados, estableciendo reflexiones filosóficas con respecto a los tamaños de los conjuntos infinitos. En 1895 publicó Contribuciones a la creación de una teoría de conjuntos transfinitos.
George Cantor concibió la creación de objetos matemáticos en “acto”, como ω, sujetas a deducciones estrictamente lógicas (libres de contradicciones), lo cual es suficiente para asegurar la existencia de los objetos, por ejemplo, y así sucesivamente, muestra un cambio cualitativo en el trabajo matemático, que hasta el día de hoy sigue desarrollándose. En opinión de George Cantor, al crear nuevos objetos de esta forma, un matemático es similar a un artista, que inventa y recrea formas y colores y el matemático lo hace con ideas abstractas. Esta revolucionaria forma de trabajo matemático ha permitido la creación de las actuales teorías matemáticas como la teoría de la medida, topología, espacios funcionales, etc. Además, permitió formalizar objetos geométricos, haciéndolos isovalentes a nociones conjuntistas, fundamentando a la geometría euclidiana y no euclidiana. En la actualidad, la teoría de conjuntos da fundamento a casi toda la matemática, de tal forma que la matemática puede ser reconstruida con base en un sistema axiomático (invención humana), dando fundamento a la corriente filosófica del formalismo, establecida por David Hilbert.
George Cantor Murió el seis de enero de 1918, en un hospital psiquiátrico de Halle, a los 73 años. Pudo vivir para ver su obra reconocida, recibió múltiples homenajes en vida, dejando una de sus frases más profundas. La esencia de la matemática reside en su libertad. Libertad que los matemáticos a partir de él han usado para inventar nuevos objetos matemáticos, nuevas conexiones, y nuevas técnicas, que han recreado la belleza de las ideas humanas.
Solo es necesario que una fracción del hielo antártico se derrita para causar estragos en el nivel geológico en nuestro planeta. Un incremento del nivel del mar que supere los dos metros de altura pondría en peligro a 770 millones de personas.
El comportamiento migratorio de los tiburones de Groenlandia aún es un misterio para la comunidad científica.
La ciencia, para mejores resultados, requiere constancia, equipamiento, infraestructura y recursos suficientes para realizar investigación de calidad.
Este fenómeno tiene graves consecuencias para el medio ambiente. Elimina la capa de protección de las plantas, dejándolas desprotegidas a la acción del viento, el frío, la sequía y convirtiéndolas en presa fácil de los parásitos o plagas, que provocan su muerte.
"Durante esta administración empezamos muy mal desde que se decía que los científicos éramos la mafia. Todos los apoyos, hubo una reducción clara", afirmó el investigador Alfredo Herrera Estrella.
Para la antigua cultura griega, los números naturales podían tener dos realizaciones, una como elemento de medición (lo llamaban magnitud) y otra como elemento de conteo.
A pesar de que el cohete no podrá aterrizar en la luna, el Instituto de la UNAM consideró que sí se han alcanzado los propósitos de la misión Colmena, toda vez que han podido articular conocimientos tecnocientíficos y formación académica.
Un molar de al menos 130 mil años de antigüedad encontrado en una cueva de Laos, en el sureste asiático, podría ser clave para arrojar nueva luz sobre los denisovanos, especie poco conocida descubierta en 2010.
En los últimos 400 mil años, la concentración de CO2 atmosférico varió de 180 a 300 ppm
Julio Verne nació en Nantes, Francia, en 1828. Fue un brillante escritor y divulgador de la ciencia.
Este miércoles, la Ciudad de México fue reconocida como la ciudad con más puntos conectados a internet en el mundo, superando incluso a Moscú, Rusia. En contraste, también ostenta el primer lugar en mayor desigualdad.
En 2019, las berries fueron el tercer producto agroalimentario más exportado por nuestro país después de la cerveza y el aguacate.
“Estamos cerca de crear lo que se llama oncovacunas, vacunas contra el cáncer y medicamentos inmunomoduladores de nueva generación", afirmó el presidente de Rusia, Vladimir Putin.
La influencia que han ejercido las ideas de Platón (Atenas, 429-347 a. C.) en la mente de los matemáticos perdura hasta nuestros días. Matemáticos contemporáneos como G. H. Hardy y Kurt Gödel son declarados platonistas.
Esta sonda despegó el 15 de enero y tiene previsto alunizar en el Mare Crisium el 2 de marzo.
Anuncian banquete cultural en la XXI edición de Espartaqueada
En la mira de Washington 29 narcotraficantes mexicanos
Recorte de subsidios golpea al sector agrícola, educativo y social
Crear imágenes por medio de IA pone en riesgo la privacidad del usuario
Madre buscadora Teresa González se debate entre la vida y la muerte
Respaldan iniciativa sobre ciberseguridad
Escrito por Dr. Esptiben Rojas Bernilla
Colaborador