Cargando, por favor espere...
Hasta el Siglo XIX, los objetos matemáticos estaban ligados a problemas concretos asociados a hechos reales, para ello solo era necesario aceptar el infinito aristotélico (potencial) en el trabajo matemático. Después de los infinitos números actualmente es posible concebir como un todo (en acto), usando el axioma del conjunto infinito, la existencia del número infinito el cual no representa ningún objeto concreto, ni fenómeno físico alguno; sin embargo, representa la génesis que cambió la esencia de la matemática. Aunque las ideas conjuntistas iniciales fueron concebidas por Bernhard Riemann y Richard Dedekind, se reconoce que el matemático que consolidó y sentó las bases para la axiomatización de la teoría de conjuntos fue el ruso George Cantor, quien nació el tres de marzo de 1845, en San Petersburgo. En 1856, la familia Cantor, de origen judío, se trasladó a Alemania (Fráncfort). Desde sus primeros años escolares destacaron sus cualidades matemáticas, estaba decidido a estudiar matemáticas, sin embargo, su padre lo envió a estudiar ingeniería al Politécnico de Zúrich. Finalmente, su padre permitió que su hijo estudiara matemática y en 1862 se pasó a la Universidad de Berlín, donde tuvo como maestros a Karl Weiertrass y Leopold Kronecker. En 1867 obtuvo su doctorado por la Universidad de Berlín.
En 1869, George Cantor comenzó a trabajar en la Universidad de Halle, donde desarrolló sus ideas sobre el infinito. En 1874 se casó con Vally Guttmann, con quien tuvo seis hijos. En este año apareció su artículo Sobre una propiedad característica de la totalidad de los números reales algebraicos; ahí enunció por primera vez sus ideas del infinito. En 1878 publicó Una contribución a la teoría de variedades. En la época, variedad era lo que conceptualmente hoy conocemos como conjunto. En 1883 publicó Fundamentos para la teoría general de la variedad, consolidando sus revolucionarias ideas sobre el infinito. Sin embargo, las ideas de George Cantor sufrirían rechazo por la comunidad matemática, sobre todo de Leopold Kronecker, quien lo tildó de “científico charlatán” y “corruptor de juventudes”. Producto de estas disputas matemáticas, sufrió ataques depresivos que en 1884 lo obligaron a abandonar la investigación matemática por más de cinco años. En 1890, George Cantor fue elegido primer presidente de la Unión Matemática Alemana. En 1892 publicó Sobre una cuestión elemental de la teoría de variedades, obra con la que demostró que los números reales no pueden ser contados, estableciendo reflexiones filosóficas con respecto a los tamaños de los conjuntos infinitos. En 1895 publicó Contribuciones a la creación de una teoría de conjuntos transfinitos.
George Cantor concibió la creación de objetos matemáticos en “acto”, como ω, sujetas a deducciones estrictamente lógicas (libres de contradicciones), lo cual es suficiente para asegurar la existencia de los objetos, por ejemplo, y así sucesivamente, muestra un cambio cualitativo en el trabajo matemático, que hasta el día de hoy sigue desarrollándose. En opinión de George Cantor, al crear nuevos objetos de esta forma, un matemático es similar a un artista, que inventa y recrea formas y colores y el matemático lo hace con ideas abstractas. Esta revolucionaria forma de trabajo matemático ha permitido la creación de las actuales teorías matemáticas como la teoría de la medida, topología, espacios funcionales, etc. Además, permitió formalizar objetos geométricos, haciéndolos isovalentes a nociones conjuntistas, fundamentando a la geometría euclidiana y no euclidiana. En la actualidad, la teoría de conjuntos da fundamento a casi toda la matemática, de tal forma que la matemática puede ser reconstruida con base en un sistema axiomático (invención humana), dando fundamento a la corriente filosófica del formalismo, establecida por David Hilbert.
George Cantor Murió el seis de enero de 1918, en un hospital psiquiátrico de Halle, a los 73 años. Pudo vivir para ver su obra reconocida, recibió múltiples homenajes en vida, dejando una de sus frases más profundas. La esencia de la matemática reside en su libertad. Libertad que los matemáticos a partir de él han usado para inventar nuevos objetos matemáticos, nuevas conexiones, y nuevas técnicas, que han recreado la belleza de las ideas humanas.
Los especialistas indican que en todo el país se detectan alrededor de 195 mil casos de cáncer al año, los cuales tienen una tasa de mortalidad del 46%.
A pesar de que el cohete no podrá aterrizar en la luna, el Instituto de la UNAM consideró que sí se han alcanzado los propósitos de la misión Colmena, toda vez que han podido articular conocimientos tecnocientíficos y formación académica.
Gracias al estudio y observación del mundo, sabemos con precisión que la naturaleza está llena de comportamientos homosexuales, desde los organismos más pequeños hasta los grandes mamíferos.
Desde el punto de vista filosófico, D’Álembert era partidario de la unidad del saber, proponía el progreso de la humanidad a través del desarrollo de la ciencia, unificadas por una filosofía desprendida de los mitos y creencias transcendentales.
Las cícadas son plantas únicas, sobrevivientes de casi 280 millones de años, compartieron espacio y tiempo con los dinosaurios y se consideran fósiles vivientes.
Para aprovechar el petróleo crudo, éste debe someterse a un proceso de destilación fraccionada para separar sus diferentes componentes, dependiendo del tamaño de las moléculas y de sus puntos de ebullición (temperatura a la cual un líquido pasa a fase gas
El desarrollo de la matemática en la actualidad es esencialmente influenciado por la escuela formalista, propuesta por uno de los últimos universalistas de la matemática, el alemán David Hilbert.
Los hallazgos sugieren un movimiento continuo hacia el oeste a lo largo de millones de años, lo que ha llevado a un refinamiento de la teoría de la tectónica de placas.
Los médicos podrían comenzar a recibir la vacuna a finales de mes, dijo la viceprimera ministra, Tatyana Golikova, en la reunión.
Un profundo conocimiento de la diversidad de climas y suelos ejerce una influencia positiva en la productividad de cultivos específicos, desde los campos de aguacate en Michoacán hasta los de agave para la producción de tequila en Jalisco.
¡La carrera comienza! La marca cuyos autos alcanzan los 340 kilómetros por hora está en riesgo. Esto en el reciente estreno de la película Ferrari, de Michael Mann.
La naturaleza es compleja y se manifiesta de muchas formas. Uno de los instrumentos para estudiar dichas formas es la geometría
La relación entre la ciencia y el dinero, entre la técnica y el negocio, ha sido ampliamente discutida por los grandes pensadores de la humanidad.
“Un lugar como nosotros depende totalmente del ingreso de los visitantes, dependemos de que los visitantes hagan el pago de su boleto para vivir la experiencia", dijo el director general.
Los ejemplos más conocidos son los invernaderos, pero no son los únicos, existen también las casas sombra, los microtúneles, los túneles y otras estructuras utilizadas dependiendo del cultivo y la región climática.
FNERRR reactivará movilizaciones en Oaxaca
Hospitales y clínicas de Oaxaca van a paro por falta de insumos
Leer es una condición de clase
CNTE irrumpe sede del SNTE y provoca incendio
México sin soberanía energética y Pemex endeudada
"Ser enemigo de Estados Unidos es peligroso, pero ser su amigo es fatal", responde China a EE. UU.
Escrito por Dr. Esptiben Rojas Bernilla
Colaborador