Cargando, por favor espere...

George Cantor: el que cambió la esencia de la matemática
Aunque las ideas iniciales fueron concebidas por Bernhard Riemann y Richard Dedekind, se reconoce que el matemático que consolidó y sentó las bases para la axiomatización de la teoría de conjuntos fue el ruso George Cantor.
Cargando...

Hasta el Siglo XIX, los objetos matemáticos estaban ligados a problemas concretos asociados a hechos reales, para ello solo era necesario aceptar el infinito aristotélico (potencial) en el trabajo matemático. Después de los infinitos números actualmente es posible concebir como un todo (en acto), usando el axioma del conjunto infinito, la existencia del número infinito el cual no representa ningún objeto concreto, ni fenómeno físico alguno; sin embargo, representa la génesis que cambió la esencia de la matemática. Aunque las ideas conjuntistas iniciales fueron concebidas por Bernhard Riemann y Richard Dedekind, se reconoce que el matemático que consolidó y sentó las bases para la axiomatización de la teoría de conjuntos fue el ruso George Cantor, quien nació el tres de marzo de 1845, en San Petersburgo. En 1856, la familia Cantor, de origen judío, se trasladó a Alemania (Fráncfort). Desde sus primeros años escolares destacaron sus cualidades matemáticas, estaba decidido a estudiar matemáticas, sin embargo, su padre lo envió a estudiar ingeniería al Politécnico de Zúrich. Finalmente, su padre permitió que su hijo estudiara matemática y en 1862 se pasó a la Universidad de Berlín, donde tuvo como maestros a Karl Weiertrass y Leopold Kronecker. En 1867 obtuvo su doctorado por la Universidad de Berlín.

En 1869, George Cantor comenzó a trabajar en la Universidad de Halle, donde desarrolló sus ideas sobre el infinito. En 1874 se casó con Vally Guttmann, con quien tuvo seis hijos. En este año apareció su artículo Sobre una propiedad característica de la totalidad de los números reales algebraicos; ahí enunció por primera vez sus ideas del infinito. En 1878 publicó Una contribución a la teoría de variedades. En la época, variedad era lo que conceptualmente hoy conocemos como conjunto. En 1883 publicó Fundamentos para la teoría general de la variedad, consolidando sus revolucionarias ideas sobre el infinito. Sin embargo, las ideas de George Cantor sufrirían rechazo por la comunidad matemática, sobre todo de Leopold Kronecker, quien lo tildó de “científico charlatán” y “corruptor de juventudes”. Producto de estas disputas matemáticas, sufrió ataques depresivos que en 1884 lo obligaron a abandonar la investigación matemática por más de cinco años. En 1890, George Cantor fue elegido primer presidente de la Unión Matemática Alemana. En 1892 publicó Sobre una cuestión elemental de la teoría de variedades, obra con la que demostró que los números reales no pueden ser contados, estableciendo reflexiones filosóficas con respecto a los tamaños de los conjuntos infinitos. En 1895 publicó Contribuciones a la creación de una teoría de conjuntos transfinitos.

George Cantor concibió la creación de objetos matemáticos en “acto”, como ω, sujetas a deducciones estrictamente lógicas (libres de contradicciones), lo cual es suficiente para asegurar la existencia de los objetos, por ejemplo, y así sucesivamente, muestra un cambio cualitativo en el trabajo matemático, que hasta el día de hoy sigue desarrollándose. En opinión de George Cantor, al crear nuevos objetos de esta forma, un matemático es similar a un artista, que inventa y recrea formas y colores y el matemático lo hace con ideas abstractas. Esta revolucionaria forma de trabajo matemático ha permitido la creación de las actuales teorías matemáticas como la teoría de la medida, topología, espacios funcionales, etc. Además, permitió formalizar objetos geométricos, haciéndolos isovalentes a nociones conjuntistas, fundamentando a la geometría euclidiana y no euclidiana. En la actualidad, la teoría de conjuntos da fundamento a casi toda la matemática, de tal forma que la matemática puede ser reconstruida con base en un sistema axiomático (invención humana), dando fundamento a la corriente filosófica del formalismo, establecida por David Hilbert.

George Cantor Murió el seis de enero de 1918, en un hospital psiquiátrico de Halle, a los 73 años. Pudo vivir para ver su obra reconocida, recibió múltiples homenajes en vida, dejando una de sus frases más profundas. La esencia de la matemática reside en su libertad. Libertad que los matemáticos a partir de él han usado para inventar nuevos objetos matemáticos, nuevas conexiones, y nuevas técnicas, que han recreado la belleza de las ideas humanas.


Escrito por Dr. Esptiben Rojas Bernilla

Colaborador


Notas relacionadas

Este fenómeno se debió al continuo uso de enormes cantidades de combustibles fósiles en todo el mundo.

Los métodos proporcionados por Eudoxo y Arquímedes, hace más de dos mil años, son usados hoy para calcular áreas con cualquier tipo de curvas y volúmenes.

Alan Turing no fue un estudiante brillante, pero si talentoso, perseverante en los problemas que quería resolver. Se hizo famoso cuando inventó una máquina capaz de descifrar los códigos secretos de comunicación usados en la SGM.

Las matemáticas están íntimamente ligadas a la sociedad y a la naturaleza. De hecho, las necesidades prácticas de una sociedad influyen en el desarrollo de la matemática, y entre más desarrollada esté la sociedad, más desarrollada estará esta ciencia.

Aunque amado por unos y odiado por otros, el huitlacoche tiene un papel relevante en la economía, gastronomía y en la ciencia.

Los genes son los responsables de la conformación del genotipo

Algunas de esas presas, como Villa Victoria, al oeste de la capital, están a un tercio de su capacidad normal, y falta mes y medio para que caiga alguna lluvia importante.

Los humanos, a diferencia de los animales, son enseñados en familias, escuelas y grupos humanos insertos en sociedades cambiantes en términos estructurales e ideológicos.

En nuestro país, el uso indiscriminado de fertilizantes químicos en la actividad agrícola se ha vuelto muy importante debido al empobrecimiento de los suelos.

En 2019, las berries fueron el tercer producto agroalimentario más exportado por nuestro país después de la cerveza y el aguacate.

El consumo de bebidas azucaradas fue responsable de 1 de cada 10 nuevos casos de diabetes tipo 2 y 1 de cada 30 casos de enfermedades vasculares en 2020.

Los bosques de oyamel (familia Pinaceae) constituyen un ecosistema que se desarrolla a una altitud de entre dos mil y tres mil 600 metros sobre el nivel del mar y se pueden encontrar en las zonas montañosas de México.

Por la relación comercial que tiene México con Estados Unidos, el 53.85 por ciento del café que se exporta de nuestro país tiene como destino Estados Unidos.

Si la incidencia de plagas y enfermedades no acaba con los bosques, sí reduce significativamente su actividad fotosintética. En los tiempos que corren esto contribuye al calentamiento global.

Solo es necesario que una fracción del hielo antártico se derrita para causar estragos en el nivel geológico en nuestro planeta. Un incremento del nivel del mar que supere los dos metros de altura pondría en peligro a 770 millones de personas.