Cargando, por favor espere...
Un tema que ha inquietado al hombre desde hace mucho tiempo es el del cálculo de áreas de terrenos accidentados para el cultivo. En las orillas del río Nilo, por ejemplo, los agricultores exigieron a su faraón un pago justo por el terreno que les quedaba después de cada inundación ocasionada por el crecimiento del río Nilo que llegaba a durar hasta 100 días, según el gran historiador Herodoto. En un principio, calcular el impuesto que tenía que pagar un agricultor no representaba mucha dificultad, pues a cada uno se le entregaba un terreno cuadrangular o rectangular. Pero después de la inundación, una buena parte de dicho terreno desaparecía, perdía su forma inicial, hasta convertirse en un terreno con forma de una amiba. El problema era ahora cómo encontrar el área aproximada de este terreno para calcular su respectivo impuesto. Aquí fue donde los matemáticos egipcios comenzaron a usar el razonamiento para crear nuevas herramientas matemáticas. Gracias a esta exigencia, el terreno en forma de amiba pudo dividirse en rectángulos y triángulos cada vez más pequeños, lo que facilitó el cálculo de áreas y, por lo tanto, el impuesto justo correspondiente a dicha área.
Sin embargo, llegar a aquel nivel de conocimiento no fue tarea fácil para el hombre, pues había recónditos donde era casi imposible encajar una pieza rectangular o triangular. El hombre tuvo la necesidad de abstraer esta realidad, crear particiones cada vez más finas y recurrir al concepto de lo infinitamente pequeño para poder encontrar áreas infinitesimales. Así fue como surgió el método de exhausión de Eudoxo de Cnido y el método por reducción al absurdo de Arquímedes de Siracusa. Con ellos, el hombre logró calcular áreas de curvas más complejas como el del círculo y el de la parábola. Estos conocimientos fueron reforzados después con las aportaciones de los matemáticos italianos Torriceli y Cavalieri, quienes introdujeron el concepto de lo infinitamente pequeño. Pero llegarían Fermat, Descartes, Leibniz y Newton para revolucionar el cálculo infinitesimal desarrollado por los griegos. Los dos últimos crearon una máquina diferencial e integral que ayudó a encontrar sin mucho esfuerzo el área bajo cualquier curva. Así nació lo que conocemos como el Teorema Fundamental del Cálculo. Sin embargo, a esta máquina le faltaba una explicación detallada de su funcionamiento. Aunque había una relación íntima entre el cálculo diferencial e integral, ambas herramientas inversas una con respecto a la otra, faltaba hacer visible el mecanismo de la segunda. Aquí es donde destacó la aportación del matemático alemán Bernhard Riemann, quien describió la integral definida como una aproximación del área bajo la curva, al dividir dicha curva en rectángulo o trapecios. Esta aproximación es conocida hoy como la suma de Riemann y consiste en encontrar el área bajo una curva por medio de rectángulos donde la altura de cada rectángulo es igual al valor de la función en cualquier punto intermedio de la base.
Para ejemplificar, trácese una parábola f(x)=x2 con el intervalo dominio [0, 1] (el resultado es el mismo para el caso [0, 1]). Procedamos a calcular el área bajo esta curva cuadrática. Dividimos el intervalo [0, 1] en 4 partes: []. Posteriormente, escogemos el punto medio de cada base de cada rectángulo, la cual mide
. Así, el punto medio de la base del primer rectángulo sería
; para el segundo,
; para el tercero,
; y para el cuarto,
. Calculamos ahora el área: para el primer rectángulo tenemos
; para el segundo,
; para el tercero,
; y finalmente, para el cuarto,
. Al sumar estas áreas obtenemos aproximadamente 0.328; un valor cercano a un tercio, el cual puede calcularse aplicando directamente la integral definida a la función cuadrática. Si el intervalo [0, 1] no lo dividimos en 4 partes, sino ahora en 8 partes o en n partes, es claro que el valor exacto al que llegaríamos sería un tercio. Pero no todas las figuras son suaves y hermosas, hay figuras en las que el método directo de integración y el Teorema Fundamental del Cálculo fallan. De ahí que la suma de Riemann cobra importancia y vigencia, pues funciona para cualquier curva y es entendible y comprensible para todo aquel que sepa aceptablemente la aritmética y el álgebra.
El fenómeno astronómico tendrá lugar la noche del día de hoy jueves 13 de marzo alrededor de las 23:00 horas, alcanzando su máximo a las 00:26 horas del viernes 14.
El ser humano ha entendido las diferentes formas de vida a través de la observación, distinguiendo las similitudes y diferencias de los organismos.
Un grupo de científicos reveló que el papiro narra la “vivificación de los gorriones”.
Para aprovechar el petróleo crudo, éste debe someterse a un proceso de destilación fraccionada para separar sus diferentes componentes, dependiendo del tamaño de las moléculas y de sus puntos de ebullición (temperatura a la cual un líquido pasa a fase gas
¿Es normal el adulterio en la naturaleza? Para respondernos analizaremos el comportamiento reproductivo de algunas especies. Tomando como ejemplo a mamíferos y aves, la monogamia existe, pero no es la regla en el mundo natural.
Ramón Picarte siempre pensó que la matemática debería ser un aporte para sacar a las personas de la pobreza; con esa idea organizó e impulsó diferentes sociedades cooperativas de artesanos y trabajadores de Santiago.
Así se titula el curso que impartiré del 22 de marzo al ocho de abril de 2022 en las instalaciones del Instituto Tecnológico de Tecomatlán de manera presencial y virtual.
El esfuerzo debe concentrarse en una capacitación intensa a los profesores, para que ellos a su vez repliquen esta enseñanza en sus alumnos, de modo que en el futuro muchos estudiantes pertenecientes a la clase pobre dispongan de las herramientas adecua
¿Alguna vez te has preguntado cómo es que podemos caminar, correr, pensar, sentir o platicar con otros? De todo eso se encargan las neuronas, su función es importantísima, aquí te cuento porqué y cómo funcionan.
El consumo de bebidas azucaradas fue responsable de 1 de cada 10 nuevos casos de diabetes tipo 2 y 1 de cada 30 casos de enfermedades vasculares en 2020.
Para la antigua cultura griega, los números naturales podían tener dos realizaciones, una como elemento de medición (lo llamaban magnitud) y otra como elemento de conteo.
En lo que va de 2019 México ha registrado 74 mil 277 casos de dengue, cifra que lo ubica en el cuarto lugar de América Latina, solo después de Brasil (un millón 958 mil 31), Nicaragua (94 mil 513) y Colombia (84 mil 644).
Considerado de los grandes matemáticos del S. XVIII, su mente no era la de un geómetra, era esencialmente analista. Newton, Euler y D’ Alembert, reconocieron que sus métodos analíticos los habían ayudado a entender problemas matemáticos.
Hablar de la existencia de la realidad ha sido un problema filosófico muy discutido. En este contexto, qué tipo de realidad es un objeto matemático, es una pregunta que abordaremos en este artículo.
Heine logró demostrar que si una serie trigonométrica converge a una función continua en un intervalo dado, entonces la serie es única.
SAT se queda sin fondos para devolución de impuestos, asegura Mario Di Costanzo
Detectan herbicida tóxico en 500 niños con daño renal en Jalisco
Comienza CFE cacería de diablitos
Crece economía China pese aranceles de Trump
“¿Cómo voy a abrazarte?”, fotografía de niño palestino sin brazos gana World Press Photo
Reportan cuatro muertes por altas temperaturas en México
Escrito por Romeo Pérez
Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.