Cargando, por favor espere...

La vigencia y la importancia de conocer la suma de Riemann
Un tema que ha inquietado al hombre desde hace mucho tiempo es el del cálculo de áreas de terrenos accidentados para el cultivo.
Cargando...

Un tema que ha inquietado al hombre desde hace mucho tiempo es el del cálculo de áreas de terrenos accidentados para el cultivo. En las orillas del río Nilo, por ejemplo, los agricultores exigieron a su faraón un pago justo por el terreno que les quedaba después de cada inundación ocasionada por el crecimiento del río Nilo que llegaba a durar hasta 100 días, según el gran historiador Herodoto. En un principio, calcular el impuesto que tenía que pagar un agricultor no representaba mucha dificultad, pues a cada uno se le entregaba un terreno cuadrangular o rectangular. Pero después de la inundación, una buena parte de dicho terreno desaparecía, perdía su forma inicial, hasta convertirse en un terreno con forma de una amiba. El problema era ahora cómo encontrar el área aproximada de este terreno para calcular su respectivo impuesto. Aquí fue donde los matemáticos egipcios comenzaron a usar el razonamiento para crear nuevas herramientas matemáticas. Gracias a esta exigencia, el terreno en forma de amiba pudo dividirse en rectángulos y triángulos cada vez más pequeños, lo que facilitó el cálculo de áreas y, por lo tanto, el impuesto justo correspondiente a dicha área.

Sin embargo, llegar a aquel nivel de conocimiento no fue tarea fácil para el hombre, pues había recónditos donde era casi imposible encajar una pieza rectangular o triangular. El hombre tuvo la necesidad de abstraer esta realidad, crear particiones cada vez más finas y recurrir al concepto de lo infinitamente pequeño para poder encontrar áreas infinitesimales. Así fue como surgió el método de exhausión de Eudoxo de Cnido y el método por reducción al absurdo de Arquímedes de Siracusa. Con ellos, el hombre logró calcular áreas de curvas más complejas como el del círculo y el de la parábola. Estos conocimientos fueron reforzados después con las aportaciones de los matemáticos italianos Torriceli y Cavalieri, quienes introdujeron el concepto de lo infinitamente pequeño. Pero llegarían Fermat, Descartes, Leibniz y Newton para revolucionar el cálculo infinitesimal desarrollado por los griegos. Los dos últimos crearon una máquina diferencial e integral que ayudó a encontrar sin mucho esfuerzo el área bajo cualquier curva. Así nació lo que conocemos como el Teorema Fundamental del Cálculo. Sin embargo, a esta máquina le faltaba una explicación detallada de su funcionamiento. Aunque había una relación íntima entre el cálculo diferencial e integral, ambas herramientas inversas una con respecto a la otra, faltaba hacer visible el mecanismo de la segunda. Aquí es donde destacó la aportación del matemático alemán Bernhard Riemann, quien describió la integral definida como una aproximación del área bajo la curva, al dividir dicha curva en rectángulo o trapecios. Esta aproximación es conocida hoy como la suma de Riemann y consiste en encontrar el área bajo una curva por medio de rectángulos donde la altura de cada rectángulo es igual al valor de la función en cualquier punto intermedio de la base.

Para ejemplificar, trácese una parábola f(x)=x2 con el intervalo dominio [0, 1] (el resultado es el mismo para el caso [0, 1]). Procedamos a calcular el área bajo esta curva cuadrática. Dividimos el intervalo [0, 1] en 4 partes: []. Posteriormente, escogemos el punto medio de cada base de cada rectángulo, la cual mide . Así, el punto medio de la base del primer rectángulo sería ; para el segundo, ; para el tercero, ; y para el cuarto, . Calculamos ahora el área: para el primer rectángulo tenemos ; para el segundo, ; para el tercero, ; y finalmente, para el cuarto, . Al sumar estas áreas obtenemos aproximadamente 0.328; un valor cercano a un tercio, el cual puede calcularse aplicando directamente la integral definida a la función cuadrática. Si el intervalo [0, 1] no lo dividimos en 4 partes, sino ahora en 8 partes o en n partes, es claro que el valor exacto al que llegaríamos sería un tercio. Pero no todas las figuras son suaves y hermosas, hay figuras en las que el método directo de integración y el Teorema Fundamental del Cálculo fallan. De ahí que la suma de Riemann cobra importancia y vigencia, pues funciona para cualquier curva y es entendible y comprensible para todo aquel que sepa aceptablemente la aritmética y el álgebra.


Escrito por Romeo Pérez

Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.


Notas relacionadas

Dos especies vegetales que no corren con la misma suerte cuando llegan las festividades navideñas.

En contraste, algunas ocupaciones que experimentarán un crecimiento notable son las que están relacionadas con la tecnología.

El matemático fue el primero en usar las funciones de variable compleja en la solución de problemas aritméticos, iniciando una fructífera área de investigación llamada: Teoría Analítica de Números.

Mirar directamente al Sol durante un eclipse puede causar daños irreversibles en la retina, incluso sin sentir dolor; como sucedió en 1991.

Sirvan estos dos ejemplos para que los estudiantes mexicanos despierten su interés por el desarrollo histórico de las fórmulas matemáticas.

Carl Jacobi desarrolló una intensa labor de investigación, su obra científica publicada por la Academia de Ciencias de Berlín asciende a ocho volúmenes.

Este fenómeno se denomina tormenta geomagnética y sus efectos se manifiestan a manera de interrupciones en las comunicaciones por radio y satélite, además de cortes de energía en los casos más extremos.

Si las personas se pierden el eclipse solar que ocurrirá este 8 de abril, tendrán que esperar por lo menos 30 años para que este fenómeno vuelva a suceder con las mismas características.

Sus ideas científicas fueron muy revolucionarias para su tiempo y no fueron comprendidas por sus contemporáneos

En la Edad Media se sospechaba que la peste negra era originada por algún agente que entraba en un cuerpo y se trasmitía a otras personas.

A pesar de que el cohete no podrá aterrizar en la luna, el Instituto de la UNAM consideró que sí se han alcanzado los propósitos de la misión Colmena, toda vez que han podido articular conocimientos tecnocientíficos y formación académica.

Para la antigua cultura griega, los números naturales podían tener dos realizaciones, una como elemento de medición (lo llamaban magnitud) y otra como elemento de conteo.

Para una circunferencia no es difícil notar que la forma de la figura siempre surge y resurge siendo la misma

El sistema CRISPR/Cas9 es considerado como el método más simple, versátil y preciso de manipulación genética.

Con una longitud de 11 kilómetros de largo y siete metros de alto, China tiene la autopista submarina más larga del mundo, denominada Taihu.