Cargando, por favor espere...
Un tema que ha inquietado al hombre desde hace mucho tiempo es el del cálculo de áreas de terrenos accidentados para el cultivo. En las orillas del río Nilo, por ejemplo, los agricultores exigieron a su faraón un pago justo por el terreno que les quedaba después de cada inundación ocasionada por el crecimiento del río Nilo que llegaba a durar hasta 100 días, según el gran historiador Herodoto. En un principio, calcular el impuesto que tenía que pagar un agricultor no representaba mucha dificultad, pues a cada uno se le entregaba un terreno cuadrangular o rectangular. Pero después de la inundación, una buena parte de dicho terreno desaparecía, perdía su forma inicial, hasta convertirse en un terreno con forma de una amiba. El problema era ahora cómo encontrar el área aproximada de este terreno para calcular su respectivo impuesto. Aquí fue donde los matemáticos egipcios comenzaron a usar el razonamiento para crear nuevas herramientas matemáticas. Gracias a esta exigencia, el terreno en forma de amiba pudo dividirse en rectángulos y triángulos cada vez más pequeños, lo que facilitó el cálculo de áreas y, por lo tanto, el impuesto justo correspondiente a dicha área.
Sin embargo, llegar a aquel nivel de conocimiento no fue tarea fácil para el hombre, pues había recónditos donde era casi imposible encajar una pieza rectangular o triangular. El hombre tuvo la necesidad de abstraer esta realidad, crear particiones cada vez más finas y recurrir al concepto de lo infinitamente pequeño para poder encontrar áreas infinitesimales. Así fue como surgió el método de exhausión de Eudoxo de Cnido y el método por reducción al absurdo de Arquímedes de Siracusa. Con ellos, el hombre logró calcular áreas de curvas más complejas como el del círculo y el de la parábola. Estos conocimientos fueron reforzados después con las aportaciones de los matemáticos italianos Torriceli y Cavalieri, quienes introdujeron el concepto de lo infinitamente pequeño. Pero llegarían Fermat, Descartes, Leibniz y Newton para revolucionar el cálculo infinitesimal desarrollado por los griegos. Los dos últimos crearon una máquina diferencial e integral que ayudó a encontrar sin mucho esfuerzo el área bajo cualquier curva. Así nació lo que conocemos como el Teorema Fundamental del Cálculo. Sin embargo, a esta máquina le faltaba una explicación detallada de su funcionamiento. Aunque había una relación íntima entre el cálculo diferencial e integral, ambas herramientas inversas una con respecto a la otra, faltaba hacer visible el mecanismo de la segunda. Aquí es donde destacó la aportación del matemático alemán Bernhard Riemann, quien describió la integral definida como una aproximación del área bajo la curva, al dividir dicha curva en rectángulo o trapecios. Esta aproximación es conocida hoy como la suma de Riemann y consiste en encontrar el área bajo una curva por medio de rectángulos donde la altura de cada rectángulo es igual al valor de la función en cualquier punto intermedio de la base.
Para ejemplificar, trácese una parábola f(x)=x2 con el intervalo dominio [0, 1] (el resultado es el mismo para el caso [0, 1]). Procedamos a calcular el área bajo esta curva cuadrática. Dividimos el intervalo [0, 1] en 4 partes: []. Posteriormente, escogemos el punto medio de cada base de cada rectángulo, la cual mide
. Así, el punto medio de la base del primer rectángulo sería
; para el segundo,
; para el tercero,
; y para el cuarto,
. Calculamos ahora el área: para el primer rectángulo tenemos
; para el segundo,
; para el tercero,
; y finalmente, para el cuarto,
. Al sumar estas áreas obtenemos aproximadamente 0.328; un valor cercano a un tercio, el cual puede calcularse aplicando directamente la integral definida a la función cuadrática. Si el intervalo [0, 1] no lo dividimos en 4 partes, sino ahora en 8 partes o en n partes, es claro que el valor exacto al que llegaríamos sería un tercio. Pero no todas las figuras son suaves y hermosas, hay figuras en las que el método directo de integración y el Teorema Fundamental del Cálculo fallan. De ahí que la suma de Riemann cobra importancia y vigencia, pues funciona para cualquier curva y es entendible y comprensible para todo aquel que sepa aceptablemente la aritmética y el álgebra.
El pan y la sal comparten una historia íntimamente relacionada desde su descubrimiento y uso en la alimentación; la cultura los tiene como emblemas relevantes en la vida cotidiana de los pueblos más antiguos.
La noche del 14 de marzo, un astro brillante se teñía de rojo, era la Luna de sangre. 1610 años antes también lo hizo la Tierra, con la sangre de Hipatia.
Con todos los avances y beneficios que la IA ha aportado a la ciencia, también surgen desafíos y preocupaciones; ahora hay preguntas sobre el papel del científico en este nuevo panorama.
Los estafadores ingresan a la información personal del usuario, roban datos bancarios y utilizan la dirección de correo para lanzar ataques a otros contactos.
Para una circunferencia no es difícil notar que la forma de la figura siempre surge y resurge siendo la misma
Este año, China auspiciará el Tercer Foro de la Franja y la Ruta para la Cooperación Internacional. De cara al futuro, China seguirá promoviendo la cooperación en innovación en el marco de la construcción conjunta de la Franja y la Ruta.
El cuerpo humano en la edad adulta tiene aproximadamente 50 trillones de células vivas que cumplen funciones específicas dentro del organismo.
En este artículo no hablaré de los libros que son útiles para la enseñanza, ni de divulgación, me centraré en libros estrictos de la disciplina. Aunque la matemática y la filosofía son distintos, tienen elementos en común.
Ante el actual embate del cambio climático, ¿cómo superará la humanidad dicha contradicción? ¿Mediante la competencia o la cooperación?
Existe una gran variedad de patrones que "evocan sensaciones dinámicas conscientes de movimiento ilusorio, a pesar de ser estático", explicaron los especialistas en su más reciente estudio.
“Con esta investigación buscan una solución a la adulteración, que con el paso del tiempo se ha vuelto más sostificada, por lo que los procedimientos analíticos también de ser cada vez mejores”.
“La extinción de especies es uno de los grandes problemas ambientales y, junto con el cambio climático y un holocausto nuclear, podrían colapsar la civilización”, planteó el ecólogo mexicano Gerardo Ceballos.
Investigadores, indican que hace dos millones de años los primeros humanos tenían la capacidad y la tecnología necesarias para explotar de forma continua una variedad de hábitats cambiantes.
Pareciera contraintuitivo que alguien haga su vida al lado de grandes montañas que sacan humo y fuego, sin embargo, ese material que sacan por sus chimeneas hace que los suelos que los rodean sean fértiles...
Esta red impulsará la creación de ciudades inteligentes y permitirá realizar cirugías a distancia
¿Qué pasó? UNAM sale del Top 100 en ranking de Reino Unido
“Garganta de cuchilla” la nueva variante de Covid-19
Se coló como juez mixto en Veracruz presunto abusador sexual
El huracán Erick, de categoría 3, toca tierra en Oaxaca
México, el país más peligroso del mundo para funcionarios públicos: ACLED
Pobladores mantienen bloqueo en la carretera Coatzacoalcos-Villahermosa
Escrito por Romeo Pérez
Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.