Cargando, por favor espere...

Origen y desarrollo del cálculo infinitesimal (2/2)
El gran pensador griego demuestra que el continuo no puede estar hecho de un conjunto de indivisibles (átomos) o de puntos (“aquello indivisible en partes”), como lo habían planteado Leucipo, Demócrito y Euclides.
Cargando...

Continuando con la discusión acerca del movimiento y la continuidad, reproduciré algunos pasajes escritos por el filósofo y científico Aristóteles en su obra Física, libro VI. En el apartado El continuo como lo infinitamente divisible, el gran pensador griego demuestra que el continuo no puede estar hecho de un conjunto de indivisibles (átomos) o de puntos (“aquello indivisible en partes”), como lo habían planteado Leucipo, Demócrito y Euclides. Esta definición nos lleva a una contradicción, advirtió Aristóteles, porque “ni los extremos de los puntos pueden ser uno, ya que en un indivisible no puede haber un extremo que sea distinto de otra parte, ni tampoco pueden estar juntos, pues lo que no tiene partes no puede tener extremos, ya que un extremo es distinto de aquel de lo cual es extremo”.

Con este argumento lógico, no solamente demostró Aristóteles la divisibilidad infinita de lo continuo, sino también la del tiempo y del movimiento, como lo prueba su siguiente razonamiento: “si todo movimiento es divisible y si una cosa en movimiento con una velocidad igual recorre una distancia menor en un tiempo menor, entonces el tiempo también será divisible”. Usando este resultado demostró que si “dos cuerpos están en movimiento, el más rápido recorrerá una distancia mayor en un tiempo igual, una distancia igual en un tiempo menor y una distancia mayor en un tiempo menor”, con lo que siempre es posible que el móvil más rápido no solo alcance al móvil más lento, sino que lo rebase, tanto como se quiera. En el caso de Aquiles y la tortuga, por ejemplo, el más veloz entre los aqueos logrará rebasar sin mucha dificultad al reptil más lento del planeta, que se desplaza a una velocidad promedio de 0.040 km/h. Con esta argumentación, el estagirita demostró a Zenón de Elea el error de su lógica.  

Sin embargo, para cerrar la discusión planteada por Zenón en sus paradojas, Aristóteles tuvo que demostrar la continuidad del tiempo. Al respecto argumentó: “puesto que todo movimiento es en el tiempo y en todo tiempo algo puede moverse más rápidamente o más lentamente, en todo tiempo podrá haber un movimiento más rápido o más lento”. Si esto es así, razonó, es necesario que el tiempo sea continuo, entendiendo al continuo como aquello “divisible en divisibles siempre divisibles”. Dos mil cien años después, el matemático alemán Georg Cantor le daría la razón al demostrar la densidad del conjunto de los números racionales e irracionales, es decir, la existencia infinita de números racionales e irracionales, entre dos cualesquiera de ellos, respectivamente. Con esta aportación matemática quedó demostrada formalmente la continuidad de la recta real, aunque Aristóteles ya lo había resuelto lógicamente. 

 Sin embargo, quedaba pendiente un problema todavía por resolver: el carácter infinito del tiempo y magnitud, tanto si son considerados infinitamente pequeños (división infinita) o infinitamente grandes (adición infinita). Ambas respuestas las proporcionó Aristóteles con sus dos tipos de infinito: el infinito potencial, definido como proceso de crecimiento o de división sin final e infinito actual, considerado como “una totalidad completa”. Una vez respondida la pregunta, Aristóteles pasa a las siguientes consideraciones: “si el tiempo es infinito con respecto a sus extremos, así también lo será la longitud”; “si el tiempo es infinito con respecto a la división, así también lo será la longitud”; y “si el tiempo es infinito en ambos respectos, la magnitud será también infinita en ambos respectos”. Guiándose con esta aseveración, Aristóteles demostró lógicamente que es posible recorrer un espacio infinito, pero solo en un tiempo infinito: “no es posible durante un tiempo finito tocar cosas que sean infinitas por su cantidad, pero se las puede tocar si son infinitas por su división, porque en este sentido el tiempo mismo es infinito. Así el tiempo en el que es recorrida una magnitud no es finito sino infinito y las infinitas cosas no son tocadas en un tiempo finito sino en infinitos intervalos de tiempo”. Con esto, Aristóteles zanjó, de una vez y por todas, las paradojas planteadas por Zenón.

No por nada Aristóteles se había ganado el respeto y admiración de Carlos Marx al considerarle como el “pensador dotado de una ciencia verdaderamente enciclopédica”. Aquí vemos, una vez más, la aportación de este gran pensador al mundo del cálculo infinitesimal.


Escrito por Romeo Pérez

Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.


Notas relacionadas

Si queremos evitar dañar irremediablemente nuestra vista mientras observamos el eclipse de este 8 de abril, hay que hacerlo siempre con los filtros adecuados. Te decimos cómo.

Leonard Euler aún de avanzada edad y ciego, continuó su producción a un ritmo acelerado; en 1770 publica otra de sus obras más sobresalientes Introducción al álgebra, pedagógicamente impecable.

En lo que va de 2019 México ha registrado 74 mil 277 casos de dengue, cifra que lo ubica en el cuarto lugar de América Latina, solo después de Brasil (un millón 958 mil 31), Nicaragua (94 mil 513) y Colombia (84 mil 644).

No dormir provoca que el cerebro elimine una cantidad significativa de neuronas, así como una perdida significativa de conexiones sinápticas; lo peor, la recuperación del sueño sería incapaz de revertir el daño.

Según un informe, un mexicano revisa su celular, en promedio, 142 veces y pasa más de 18 horas y 12 minutos a la semana en su pantalla.

Los Cordyceps infectan insectos que son dominantes y suelen propagarse como plagas

Aunque amado por unos y odiado por otros, el huitlacoche tiene un papel relevante en la economía, gastronomía y en la ciencia.

Mientras el trabajo matemático tiene reglas, axiomas, y su libertad está en función de estar gobernado por sistemas formales; en el trabajo filosófico...

Aunque la predicción del reconocido científico menciona específicamente a los Estados Unidos, los temas que reflexiona tienen alcance global.

Para Pitágoras, el conocimiento no se agota con lo empírico, porque su esencia está en el segundo, se encuentra donde está el número, concebido como una relación abstracta (no de cálculo).

Arquímedes se había adelantado a los matemáticos de mediados y último tercio del Siglo XVII como Cavalieri, Pascal, Newton y Bernoulli.

La imagen viral que vimos en redes sociales captada por el el telescopio espacial “James Webb” nos muestra cómo se veía una porción del universo hace cuatro mil 600 millones de años.

Por definición, un alimento funcional es aquel que es ingerido de manera regular en la dieta, que además de ser nutritivo, ofrece beneficios para la salud o reduce el riesgo de padecer enfermedades.

El 8 de abril será la fecha clave y también será la primera vez que se intente volar un dispositivo en otro planeta.

El cero, concebido como ausencia de cantidad, no existía en el mundo griego, puesto que no creían en el no ser; su presencia se vino a establecer muy paulatinamente.