Cargando, por favor espere...

Origen y desarrollo del cálculo infinitesimal (2/2)
El gran pensador griego demuestra que el continuo no puede estar hecho de un conjunto de indivisibles (átomos) o de puntos (“aquello indivisible en partes”), como lo habían planteado Leucipo, Demócrito y Euclides.
Cargando...

Continuando con la discusión acerca del movimiento y la continuidad, reproduciré algunos pasajes escritos por el filósofo y científico Aristóteles en su obra Física, libro VI. En el apartado El continuo como lo infinitamente divisible, el gran pensador griego demuestra que el continuo no puede estar hecho de un conjunto de indivisibles (átomos) o de puntos (“aquello indivisible en partes”), como lo habían planteado Leucipo, Demócrito y Euclides. Esta definición nos lleva a una contradicción, advirtió Aristóteles, porque “ni los extremos de los puntos pueden ser uno, ya que en un indivisible no puede haber un extremo que sea distinto de otra parte, ni tampoco pueden estar juntos, pues lo que no tiene partes no puede tener extremos, ya que un extremo es distinto de aquel de lo cual es extremo”.

Con este argumento lógico, no solamente demostró Aristóteles la divisibilidad infinita de lo continuo, sino también la del tiempo y del movimiento, como lo prueba su siguiente razonamiento: “si todo movimiento es divisible y si una cosa en movimiento con una velocidad igual recorre una distancia menor en un tiempo menor, entonces el tiempo también será divisible”. Usando este resultado demostró que si “dos cuerpos están en movimiento, el más rápido recorrerá una distancia mayor en un tiempo igual, una distancia igual en un tiempo menor y una distancia mayor en un tiempo menor”, con lo que siempre es posible que el móvil más rápido no solo alcance al móvil más lento, sino que lo rebase, tanto como se quiera. En el caso de Aquiles y la tortuga, por ejemplo, el más veloz entre los aqueos logrará rebasar sin mucha dificultad al reptil más lento del planeta, que se desplaza a una velocidad promedio de 0.040 km/h. Con esta argumentación, el estagirita demostró a Zenón de Elea el error de su lógica.  

Sin embargo, para cerrar la discusión planteada por Zenón en sus paradojas, Aristóteles tuvo que demostrar la continuidad del tiempo. Al respecto argumentó: “puesto que todo movimiento es en el tiempo y en todo tiempo algo puede moverse más rápidamente o más lentamente, en todo tiempo podrá haber un movimiento más rápido o más lento”. Si esto es así, razonó, es necesario que el tiempo sea continuo, entendiendo al continuo como aquello “divisible en divisibles siempre divisibles”. Dos mil cien años después, el matemático alemán Georg Cantor le daría la razón al demostrar la densidad del conjunto de los números racionales e irracionales, es decir, la existencia infinita de números racionales e irracionales, entre dos cualesquiera de ellos, respectivamente. Con esta aportación matemática quedó demostrada formalmente la continuidad de la recta real, aunque Aristóteles ya lo había resuelto lógicamente. 

 Sin embargo, quedaba pendiente un problema todavía por resolver: el carácter infinito del tiempo y magnitud, tanto si son considerados infinitamente pequeños (división infinita) o infinitamente grandes (adición infinita). Ambas respuestas las proporcionó Aristóteles con sus dos tipos de infinito: el infinito potencial, definido como proceso de crecimiento o de división sin final e infinito actual, considerado como “una totalidad completa”. Una vez respondida la pregunta, Aristóteles pasa a las siguientes consideraciones: “si el tiempo es infinito con respecto a sus extremos, así también lo será la longitud”; “si el tiempo es infinito con respecto a la división, así también lo será la longitud”; y “si el tiempo es infinito en ambos respectos, la magnitud será también infinita en ambos respectos”. Guiándose con esta aseveración, Aristóteles demostró lógicamente que es posible recorrer un espacio infinito, pero solo en un tiempo infinito: “no es posible durante un tiempo finito tocar cosas que sean infinitas por su cantidad, pero se las puede tocar si son infinitas por su división, porque en este sentido el tiempo mismo es infinito. Así el tiempo en el que es recorrida una magnitud no es finito sino infinito y las infinitas cosas no son tocadas en un tiempo finito sino en infinitos intervalos de tiempo”. Con esto, Aristóteles zanjó, de una vez y por todas, las paradojas planteadas por Zenón.

No por nada Aristóteles se había ganado el respeto y admiración de Carlos Marx al considerarle como el “pensador dotado de una ciencia verdaderamente enciclopédica”. Aquí vemos, una vez más, la aportación de este gran pensador al mundo del cálculo infinitesimal.


Escrito por Romeo Pérez

Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.


Notas relacionadas

Y es al mismo tiempo un retrato fiel de las sociedades en las que rige el neoliberalismo.

Los ejemplos más conocidos son los invernaderos, pero no son los únicos, existen también las casas sombra, los microtúneles, los túneles y otras estructuras utilizadas dependiendo del cultivo y la región climática.

A pesar del indiscutible rol que juegan los bosques, cada año disminuye su superficie debido al cambio de uso de suelo, tala clandestina e incendios forestales. De 2000 a 2018 se perdieron 13 mil 777 hectáreas.

Solo es necesario que una fracción del hielo antártico se derrita para causar estragos en el nivel geológico en nuestro planeta. Un incremento del nivel del mar que supere los dos metros de altura pondría en peligro a 770 millones de personas.

A la naturaleza no le importa si los machos son atraídos hacia los machos o las hembras hacia las hembras. Es mas bien la ideología humana la que castiga estos comportamientos, argumentando que solo prohíbe lo que es “antinatural”.

La luminiscencia se encuentra, entre otro organismos, en estrellas de mar, tiburones y los dinoflagelados que, al emitir luz, hacen que el mar se llene de vida con olas brillantes, proyectando luz a lo largo de las costas.

El famoso Axioma de elección juega un poco con la intuición humana, ya que demuestra que todo conjunto puede ser bien ordenado, aunque no se muestra cuál es ese orden.

Mientras el trabajo matemático tiene reglas, axiomas, y su libertad está en función de estar gobernado por sistemas formales; en el trabajo filosófico...

Sirva de ejemplo la vida de Bonaventura Francesco Cavalieri para que los jóvenes mexicanos decidan estudiar matemáticas y comprendan que es útil en la resolución de problemas reales.

Para mejorar el rendimiento de los atletas, debemos contemplar en nuestro trabajo deportivo el desarrollo de los conceptos y habilidades que explico en este artículo.

Carl Jacobi desarrolló una intensa labor de investigación, su obra científica publicada por la Academia de Ciencias de Berlín asciende a ocho volúmenes.

Nuestras características físicas son resultado de la combinación de nuestros genes y entorno. Cada quien es distinto: tiene una combinación única de genes y ha sido moldeada por la realidad en que se desarrolla antes y después de nacer.

En los últimos 400 mil años, la concentración de CO2 atmosférico varió de 180 a 300 ppm

El matemático sintió mucha inclinación por las humanidades y los idiomas, aprendió latín, griego, alemán, italiano y francés. Además, estudió por su cuenta y nunca obtuvo un título académico, aún así, fue reconocido a lo largo de su vida.

Los especialistas indican que en todo el país se detectan alrededor de 195 mil casos de cáncer al año, los cuales tienen una tasa de mortalidad del 46%.