Cargando, por favor espere...

Origen y desarrollo del cálculo infinitesimal (2/2)
El gran pensador griego demuestra que el continuo no puede estar hecho de un conjunto de indivisibles (átomos) o de puntos (“aquello indivisible en partes”), como lo habían planteado Leucipo, Demócrito y Euclides.
Cargando...

Continuando con la discusión acerca del movimiento y la continuidad, reproduciré algunos pasajes escritos por el filósofo y científico Aristóteles en su obra Física, libro VI. En el apartado El continuo como lo infinitamente divisible, el gran pensador griego demuestra que el continuo no puede estar hecho de un conjunto de indivisibles (átomos) o de puntos (“aquello indivisible en partes”), como lo habían planteado Leucipo, Demócrito y Euclides. Esta definición nos lleva a una contradicción, advirtió Aristóteles, porque “ni los extremos de los puntos pueden ser uno, ya que en un indivisible no puede haber un extremo que sea distinto de otra parte, ni tampoco pueden estar juntos, pues lo que no tiene partes no puede tener extremos, ya que un extremo es distinto de aquel de lo cual es extremo”.

Con este argumento lógico, no solamente demostró Aristóteles la divisibilidad infinita de lo continuo, sino también la del tiempo y del movimiento, como lo prueba su siguiente razonamiento: “si todo movimiento es divisible y si una cosa en movimiento con una velocidad igual recorre una distancia menor en un tiempo menor, entonces el tiempo también será divisible”. Usando este resultado demostró que si “dos cuerpos están en movimiento, el más rápido recorrerá una distancia mayor en un tiempo igual, una distancia igual en un tiempo menor y una distancia mayor en un tiempo menor”, con lo que siempre es posible que el móvil más rápido no solo alcance al móvil más lento, sino que lo rebase, tanto como se quiera. En el caso de Aquiles y la tortuga, por ejemplo, el más veloz entre los aqueos logrará rebasar sin mucha dificultad al reptil más lento del planeta, que se desplaza a una velocidad promedio de 0.040 km/h. Con esta argumentación, el estagirita demostró a Zenón de Elea el error de su lógica.  

Sin embargo, para cerrar la discusión planteada por Zenón en sus paradojas, Aristóteles tuvo que demostrar la continuidad del tiempo. Al respecto argumentó: “puesto que todo movimiento es en el tiempo y en todo tiempo algo puede moverse más rápidamente o más lentamente, en todo tiempo podrá haber un movimiento más rápido o más lento”. Si esto es así, razonó, es necesario que el tiempo sea continuo, entendiendo al continuo como aquello “divisible en divisibles siempre divisibles”. Dos mil cien años después, el matemático alemán Georg Cantor le daría la razón al demostrar la densidad del conjunto de los números racionales e irracionales, es decir, la existencia infinita de números racionales e irracionales, entre dos cualesquiera de ellos, respectivamente. Con esta aportación matemática quedó demostrada formalmente la continuidad de la recta real, aunque Aristóteles ya lo había resuelto lógicamente. 

 Sin embargo, quedaba pendiente un problema todavía por resolver: el carácter infinito del tiempo y magnitud, tanto si son considerados infinitamente pequeños (división infinita) o infinitamente grandes (adición infinita). Ambas respuestas las proporcionó Aristóteles con sus dos tipos de infinito: el infinito potencial, definido como proceso de crecimiento o de división sin final e infinito actual, considerado como “una totalidad completa”. Una vez respondida la pregunta, Aristóteles pasa a las siguientes consideraciones: “si el tiempo es infinito con respecto a sus extremos, así también lo será la longitud”; “si el tiempo es infinito con respecto a la división, así también lo será la longitud”; y “si el tiempo es infinito en ambos respectos, la magnitud será también infinita en ambos respectos”. Guiándose con esta aseveración, Aristóteles demostró lógicamente que es posible recorrer un espacio infinito, pero solo en un tiempo infinito: “no es posible durante un tiempo finito tocar cosas que sean infinitas por su cantidad, pero se las puede tocar si son infinitas por su división, porque en este sentido el tiempo mismo es infinito. Así el tiempo en el que es recorrida una magnitud no es finito sino infinito y las infinitas cosas no son tocadas en un tiempo finito sino en infinitos intervalos de tiempo”. Con esto, Aristóteles zanjó, de una vez y por todas, las paradojas planteadas por Zenón.

No por nada Aristóteles se había ganado el respeto y admiración de Carlos Marx al considerarle como el “pensador dotado de una ciencia verdaderamente enciclopédica”. Aquí vemos, una vez más, la aportación de este gran pensador al mundo del cálculo infinitesimal.


Escrito por Romeo Pérez

Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.


Notas relacionadas

Durante el gobierno de Napoleón, Francia vivió una época brillante para la ciencia, se hablaba del Imperio de las Ciencias.

Este telescopio espacial fue lanzado el sábado mediante el cohete Ariane 5 y es un proyecto liderado por la NASA.

El papel de la ciencia en el desarrollo social se piensa en sus aportaciones a la tecnología para elevar la productividad, generar riqueza, crecimiento económico y progreso.

Además de generar beneficios importantes para los suelos, la materia orgánica contribuye al amortiguamiento de agentes contaminantes. Sin embargo, las actividades humanas han provocado que en el 42% de nuestro territorio los suelos estén casi inservibles.

Niños inquietos e inteligentes como el que me preguntó hay muchos en nuestro país; pero muy pocos son rescatados y apoyados para continuar con sus estudios

El caso chileno ilustra los riesgos ecológicos que trae consigo la producción de litio: en el Salar del Carmen se extrae diariamente cantidades gigantescas de agua la empresa SQM, la segunda mayor productora de litio en el mundo.

En las ideas de Anaximandro no estaban presentes ideas esenciales de la ciencia moderna.

Explicaron que la levitación magnética sucede cuando un objeto es suspendido en el aire.

Queda claro que AMLO tiene un desconocimiento abismal acerca de la relación entre la ciencia y la política.

Alrededor de 20 especies de ciempiés podrían ser clave en el desarrollo de nuevos tratamientos médicos.

En este artículo sarás por qué es tan importante saber respirar bien cuando realizas algún tipo de ejercicio físico.

“Estamos ante la presencia del gobierno que intenta ver como accidentes, lo que más bien han sido tragedias provocadas por la ausencia de mantenimiento”, denunció Andrés Atayde, presidente del PAN.

Serán visibles en todo el hemisferio norte y sus meteoros podrán superar los 50 kilómetros por segundo.

La Lluvia de Meteoros Delta Acuáridas será más visible en el hemisferio sur.

La cerveza se utilizaba como ofrenda a los dioses en casi todas las culturas de Europa, el Medio Oriente y Asia. En los países nórdicos (Dinamarca, Finlandia, Islandia, Noruega y Suecia) se ofrecía cerveza a Odín.