Cargando, por favor espere...

La génesis de la teoría de conjuntos (parte II)
Heine logró demostrar que si una serie trigonométrica converge a una función continua en un intervalo dado, entonces la serie es única.
Cargando...

En 1870, Eduard Heine (1821-1881) buscaba determinar las condiciones para la unicidad de la representación de funciones reales mediante series trigonométricas (Fourier). Heine logró demostrar que si una serie trigonométrica converge a una función continua en un intervalo dado, entonces la serie es única. Sin embargo, no encontró una demostración general para tal hecho, tarea que encomendó al matemático alemán George Cantor (1845–1918), quien logró demostrar en su tesis doctoral que la representación es única si la función a representar sea discontinua o la serie no converja en una cantidad finita de puntos. En 1872, Cantor demostró que la unicidad seguía valiendo para un caso excepcional de una cantidad infinita de puntos; a esta condición excepcional la llamó Conjunto Derivado.

Sea P el conjunto de números del intervalo [a, b], en los que la serie no converge o la función es discontinua (usando el principio de extensión). Si P es infinito, existirán puntos de acumulación (resultado de Karl Weierstrass). Al conjunto de aquellos puntos de acumulación, Cantor lo llamó Conjunto Derivado de P y fue denotado por . En general es un conjunto infinito y podemos aplicar el mismo razonamiento y conseguir P´´, y así sucesivamente, de tal forma que Pn es el conjunto de puntos de acumulación de Pn−1. Si Pn existe n entonces P se llama “conjunto de segunda especie”, o si deja de existir para algún n, en este caso se llamaba “conjunto de primera especie”. Usando procesos inductivos, Cantor muestra que, si P es de primera especie, entonces la serie trigonométrica es única. Esta idea notable resultó esencial, para que los matemáticos de la época empezaran a desarrollar estos métodos conjuntistas en sus investigaciones. Además, Karl Weierstrass estableció la idea de convergencia uniforme, para que esto funcione.

El matemático que desarrolló esta metodología usada por Bernard Riemann y George Cantor fue Richard Dedekind (1831-1916), dándole resultados extraordinarios; podemos decir que sentó las bases modernas de lo que hoy llamamos Álgebra abstracta. En 1871, Dedekind publicó su Teoría de números algebraicos, también llamada Teoría de ideales por Hilbert; también presentó la noción de cuerpo, anillos enteros, módulos e ideales. En sus clases en la Universidad de Göttingen, Richard Dedekind expuso lo que hoy llamamos Teoría de Galois, en su versión moderna. Sin lugar a dudas era un extraordinario algebrista abstracto: estableció las primeras ideas para concebir a los números enteros a partir de las nociones fundamentales de la Teoría de Conjuntos; mediante la noción de Cadena demostró cómo se pueden obtener todas las propiedades aritméticas de los enteros usando los conjuntos de Cantor. Por otro lado, construyó los números reales con base en las llamadas cortaduras en Q, que hoy llevan su nombre. Todo este extraordinario trabajo fue posible gracias a la metodología conjuntista, pese que no era lo habitual dentro de sus contemporáneos, que preferían una metodología más constructivista.

Desde 1878 a 1892, George Cantor llama a la Teoría de Conjuntos como Teoría de Variedades, siguiendo la idea de Bernard Riemann. Probó que R y Rn son equipotentes, es decir, tienen la misma cardinalidad (mismo número de puntos); que los números racionales son numerables y que los números reales, no lo son. El concepto de “cardinalidad” llamó la atención de Cantor e intentó determinar la cardinalidad de R. Unos años después desarrolló los conjuntos bien ordenados y formuló la famosa Hipótesis del Continuo, cuyo enunciado afirma que “no existen conjuntos infinitos cuyo tamaño esté estrictamente comprendido entre el conjunto de los números naturales y del conjunto de los reales”. A los números reales también se le suele llamar “continuo”. En estas investigaciones introdujo la construcción de los números reales a través de sucesiones fundamentales también llamadas Sucesiones de Cauchy.


Escrito por Dr. Esptiben Rojas Bernilla

Colaborador


Notas relacionadas

“Las redes sociales en general son una amenaza para la salud mental de los menores”, declaró el alcalde de la ciudad de Nueva York, Eric Adams.

Serán visibles en todo el hemisferio norte y sus meteoros podrán superar los 50 kilómetros por segundo.

¿Es normal el adulterio en la naturaleza? Para respondernos analizaremos el comportamiento reproductivo de algunas especies. Tomando como ejemplo a mamíferos y aves, la monogamia existe, pero no es la regla en el mundo natural.

El hallazgo sucedió en mayo de 2022 por el paleontólogo Damien Boschetto, quien observó en el borde de un acantilado derrumbado un hueso expuesto.

El matemático sintió mucha inclinación por las humanidades y los idiomas, aprendió latín, griego, alemán, italiano y francés. Además, estudió por su cuenta y nunca obtuvo un título académico, aún así, fue reconocido a lo largo de su vida.

Este primero de diciembre, después de medio día, se esperan apagones en señales de radio y GPS; así como en teléfonos celulares y el internet, esto luego de que una tormenta solar denominada “Caníbal” golpee nuestro planeta.

La MIA-F1 reconoce afectaciones de gran magnitud a los ecosistemas de los primeros tres tramos.

Durante el gobierno de Napoleón, Francia vivió una época brillante para la ciencia, se hablaba del Imperio de las Ciencias.

“En México no se está instrumentando una política real para salvar la vida y proteger a los mexicanos de los desastres naturales", afirmó el Doctor en Física, Romeo Pérez Ortiz.

Un tema que ha inquietado al hombre desde hace mucho tiempo es el del cálculo de áreas de terrenos accidentados para el cultivo.

Los fractales son estructuras cuyo patrón se repite a diferentes escalas y casi de manera infinita. Están presentes prácticamente en todos los aspectos de nuestro entorno, casi ocultos a simple vista.

Descartes, fundamentalmente era un filósofo racionalista, llegó a escribir otras obras importantes, en 1641 escribió Meditaciones de Filosofía.

“Caffarelli tiene una intuición fantástica, es sencillamente notable… me costó mucho seguirle el ritmo. De algún modo, ve inmediatamente cosas que los otros no ven”, afirmó el afamado matemático Louis Nirenberg.

Los trabajos que pueden contribuir a un incremento en el riesgo de sufrir demencia destacan los que están relacionados con funciones mecánicas o procesos automatizados.

El pequeño Pablo contó con la asesoría de la profesora Laura Julia Sánchez; su proyecto se centra en la conservación de una especie crucial para la biodiversidad y los ecosistemas acuáticos de las barrancas de Cuernavaca.