Cargando, por favor espere...
En 1870, Eduard Heine (1821-1881) buscaba determinar las condiciones para la unicidad de la representación de funciones reales mediante series trigonométricas (Fourier). Heine logró demostrar que si una serie trigonométrica converge a una función continua en un intervalo dado, entonces la serie es única. Sin embargo, no encontró una demostración general para tal hecho, tarea que encomendó al matemático alemán George Cantor (1845–1918), quien logró demostrar en su tesis doctoral que la representación es única si la función a representar sea discontinua o la serie no converja en una cantidad finita de puntos. En 1872, Cantor demostró que la unicidad seguía valiendo para un caso excepcional de una cantidad infinita de puntos; a esta condición excepcional la llamó Conjunto Derivado.
Sea P el conjunto de números del intervalo [a, b], en los que la serie no converge o la función es discontinua (usando el principio de extensión). Si P es infinito, existirán puntos de acumulación (resultado de Karl Weierstrass). Al conjunto de aquellos puntos de acumulación, Cantor lo llamó Conjunto Derivado de P y fue denotado por P´. En general P´ es un conjunto infinito y podemos aplicar el mismo razonamiento y conseguir P´´, y así sucesivamente, de tal forma que Pn es el conjunto de puntos de acumulación de Pn−1. Si Pn existe n entonces P se llama “conjunto de segunda especie”, o si deja de existir para algún n, en este caso se llamaba “conjunto de primera especie”. Usando procesos inductivos, Cantor muestra que, si P es de primera especie, entonces la serie trigonométrica es única. Esta idea notable resultó esencial, para que los matemáticos de la época empezaran a desarrollar estos métodos conjuntistas en sus investigaciones. Además, Karl Weierstrass estableció la idea de convergencia uniforme, para que esto funcione.
El matemático que desarrolló esta metodología usada por Bernard Riemann y George Cantor fue Richard Dedekind (1831-1916), dándole resultados extraordinarios; podemos decir que sentó las bases modernas de lo que hoy llamamos Álgebra abstracta. En 1871, Dedekind publicó su Teoría de números algebraicos, también llamada Teoría de ideales por Hilbert; también presentó la noción de cuerpo, anillos enteros, módulos e ideales. En sus clases en la Universidad de Göttingen, Richard Dedekind expuso lo que hoy llamamos Teoría de Galois, en su versión moderna. Sin lugar a dudas era un extraordinario algebrista abstracto: estableció las primeras ideas para concebir a los números enteros a partir de las nociones fundamentales de la Teoría de Conjuntos; mediante la noción de Cadena demostró cómo se pueden obtener todas las propiedades aritméticas de los enteros usando los conjuntos de Cantor. Por otro lado, construyó los números reales con base en las llamadas cortaduras en Q, que hoy llevan su nombre. Todo este extraordinario trabajo fue posible gracias a la metodología conjuntista, pese que no era lo habitual dentro de sus contemporáneos, que preferían una metodología más constructivista.
Desde 1878 a 1892, George Cantor llama a la Teoría de Conjuntos como Teoría de Variedades, siguiendo la idea de Bernard Riemann. Probó que R y Rn son equipotentes, es decir, tienen la misma cardinalidad (mismo número de puntos); que los números racionales son numerables y que los números reales, no lo son. El concepto de “cardinalidad” llamó la atención de Cantor e intentó determinar la cardinalidad de R. Unos años después desarrolló los conjuntos bien ordenados y formuló la famosa Hipótesis del Continuo, cuyo enunciado afirma que “no existen conjuntos infinitos cuyo tamaño esté estrictamente comprendido entre el conjunto de los números naturales y del conjunto de los reales”. A los números reales también se le suele llamar “continuo”. En estas investigaciones introdujo la construcción de los números reales a través de sucesiones fundamentales también llamadas Sucesiones de Cauchy.
El sistema CRISPR/Cas9 es considerado como el método más simple, versátil y preciso de manipulación genética.
"Sólo siete países africanos (de 54) tienen una posibilitad de conseguir el objetivo", declaró Matshidiso Moeti, directora de la OMS para África, en una rueda de prensa en línea.
Se sabe que Arquímedes calculó el valor del número irracional π a 11 decimales cuando se aproximó al área de un círculo de radio uno.
El término “física térmica” causa curiosidad debido a que, en la división clásica de la física, no existe una rama como tal.
La tecnología hace posible que las ventas en línea lleguen a más personas, sin importar donde se encuentren; por lo que cada vez más usuarios de la red realizan compras a través de internet.
¿Realmente son nocivas para el ecosistema? Un ambientalista dirá: “sí, porque desplazan especies nativas”. Sin embargo, ciertas necesidades se satisfacen mejor con especies exóticas que con nativas, por lo que es necesario asumir riesgos.
Astrónomos encontraron señal de vida en lo alto de la atmósfera de Venus: indicios que puede haber extraños microbios viviendo en las nubes cargadas de ácido sulfúrico.
La disminución de la biodiversidad podría aumentar el riesgo de enfermedades crónicas para la humanidad.
Este telescopio espacial fue lanzado el sábado mediante el cohete Ariane 5 y es un proyecto liderado por la NASA.
Viajarán a la ciudad de Bucarest, Rumania para participar en el concurso internacional "Infomatrix World Finals".
La palabra “hidroponia” deriva del griego hydro (agua) y ponos (trabajo), significa “trabajo en agua”.
Considerado de los grandes matemáticos del S. XVIII, su mente no era la de un geómetra, era esencialmente analista. Newton, Euler y D’ Alembert, reconocieron que sus métodos analíticos los habían ayudado a entender problemas matemáticos.
Esta herramienta prescinde de las cuerdas vocales y restaura el habla ofreciendo esperanza para pacientes con trastornos de la voz.
Para que el deportista cumpla sus objetivos físicos debe considerar varias variables. Aquí explicamos la hipertrofia muscular, puesto que la población que realiza deporte casi siempre busca una buena imagen física.
A través de milenios hemos inventado más símbolos, creado más conceptos y conexiones conceptuales; pero en esencia el lenguaje matemático es parcial, no puede describir sentimientos, emociones, alegrías ni la poesía.
Escrito por Dr. Esptiben Rojas Bernilla
Colaborador