Cargando, por favor espere...
Félix Klein, pasó a ocupar la cátedra de la Escuela técnica de Munich en 1875 y se casó con Anna Hegel, nieta del famoso filósofo G.W.F.Hegel (1770 - 1830). De 1880 a 1886 ocupó una cátedra en la Universidad de Leipzig. Se le recuerda como un excelente profesor, fueron sus mejores años de producción matemática, no sólo en la geometría, sino también en la teoría de funciones de variable compleja, desarrollando la teoría de funciones automorfas.
Félix Klein, entró en comunicación con el joven matemático Henri Poincaré (1854 - 1912), para informarle de sus propias investigaciones, sin embargo, fueron comunicaciones un tanto conflictivas. Desde 1886 ocupó una cátedra en la universidad de Gotinga, en donde se estableció hasta su muerte.
La rivalidad científica entre Klein y Poincaré por llegar primeros a resultados antes que el otro terminó con agotar a Félix Klein, enfermándolo seriamente; nunca más tuvo la productividad matemática de antes.
Félix Klein perdió su capacidad creativa, pero se ocupó con mucho ahínco de tareas directivas y organizativas, demostrando su competencia e influyendo en el desarrollo de la matemática alemana. Nunca perdió sus capacidades docentes y fue muy reconocido por sus alumnos y colegas. Estuvo muy preocupado por la enseñanza de la matemática; en 1908 fue designado presidente de la Comisión Internacional de la Enseñanza de la Matemática. Una de sus obras más famosas es Elementos de la matemática elemental desde el punto de vista superior, cuyo primer volumen está dedicado a la aritmética, álgebra y análisis, mientras el segundo volumen a la geometría.
La historia de la matemática fue de mucho interés para Félix Klein; se encargó de las obras completas de su profesor Plücker, Möbius, Gauss, Grassmann y Riemann. Durante muchos años brindó conferencias sobre historia de la matemática del Siglo XIX, donde él mismo era protagonista. Producto de seminarios que impartió entre 1914 y 1915, sobre historia de la matemática aparece primero una versión escrita de sus conferencias, para luego póstumamente ser publicado en 1926 bajo el título Lecciones sobre el desarrollo histórico de la matemática del Siglo XIX. Además, dejó un legado de 63 tesis doctorales dirigidas, una visión académica y una estructura organizativa para potenciar a la investigación matemática que hasta hoy se sigue.
Félix Klein se jubiló en la Universidad de Gotinga en 1913, muriendo producto de una grave enfermedad el 22 de junio 1925, a los 76 años. Fue sepultado en el Cementerio de la ciudad de Gotinga.
En la novela Los crímenes de Oxford, su autor, el doctor en Matemáticas y escritor argentino Guillermo Martínez, es un ejemplo de convergencia de estas dos áreas aparentemente disímiles: matemáticas y literatura.
Fue nombrado miembro de la Real Academia de Ciencias Exactas, Físicas y Naturales en 1983; entre 1991 y 1993 fue presidente de la Comisión Internacional de Instrucción Matemática (ICMI).
La matemática del Siglo XVIII se caracteriza por su falta de rigor, por carecer de un cuerpo teórico para hacer a las nuevas herramientas matemáticas más eficientes.
Ninguno de estos libros me parece copia o similares a los libros estándar.
Desde el inicio de la cuarta revolución matemática, en las primeras décadas del Siglo XX, el formalismo hilbertiano ha caracterizado el trabajo matemático hasta el día de hoy. Este paradigma histórico del formalismo se caracteriza por...
El cerebro no aprende matemática si no se enfrenta a algo difícil, o por lo menos desafiante, que rete su imaginación y saque todo su potencial.
El pensamiento lógico en el ser humano es una característica antropológica formada en el cerebro humano por miles de años de evolución.
La característica esencial en su trabajo era que no estaba interesado en resolver problemas sino en la comprensión conceptual profunda y completa de las estructuras que se van tejiendo en el intrincado mundo matemático.
Un matemático chileno dijo en una entrevista: “una cosa es escribir papers y otra cosa es saber matemática… recomendaría a los jóvenes que primero se dediquen a saber matemática y después se dediquen a escribir papers si desean”.
Matemático universal, capaz de conectar las ecuaciones diferenciales y el álgebra abstracta.
La existencia de los conjuntos infinitos en matemática es obra de George Cantor, quien quedó maravillado cuando descubrió algunas rarezas que emanaban de este objeto, sin darse cuenta que estaba a punto de ingresar en un fascinante mundo abstracto.
En la primera mitad del Siglo XX aparece el fenómeno de la masificación de la educación matemática, periodo en que la matemática entra en la revolución del formalismo hilbertiano.
El desarrollo de la investigación matemática ha sido tan espectacular, que abarcar todo el conocimiento actual de la matemática se ha vuelto imposible para cualquier ser humano.
Albert Einstein es el físico más importante del Siglo XX, sus ideas profundas han revolucionado las bases de la física newtoniana, dejando estupefactos a los grandes físicos de su época.
El método axiomático en la geometría es quizás el aporte más notable que ha dado la matemática a la humanidad.
Dan sentencia definitiva a Cuauhtémoc Blanco por violencia política de género
Casi un millón de estudiantes abandonaron la escuela en el ciclo 2024-2025
Mundial de 2026 presionará precios de la vivienda en CDMX y aumentará la gentrificación
Malas finanzas de Pemex encienden alerta en la iniciativa privada
Van contra la opacidad en la medición de la pobreza; distintas ONG lanzan iniciativa propia
Edomex anuncia tren ligero que conectará Texcoco con la CDMX
Escrito por Dr. Esptiben Rojas Bernilla
Colaborador