Cargando, por favor espere...

Espacio curvo de Riemann (II de III)
Einstein hizo lo mismo con la estructura del universo donde habitamos, al demostrar que es también un espacio curvo.
Cargando...

En su disertación Sobre la hipótesis en la que subyacen los fundamentos de la geometría (1854), dicha en presencia de su asesor de tesis Carl Gauss, el matemático alemán Bernhard Riemann expuso los fundamentos de una nueva geometría que hoy es conocida como elíptica o riemanniana. En ese trabajo explicó su teoría del espacio curvo y que debió crear una herramienta conocida como variedad n dimensional para poder estudiar la curvatura de una superficie cualquiera de dimensión mayor o igual a 2. Sus resultados ayudaron a Albert Einstein a comprender la estructura geométrica del universo.

El estudio del espacio curvo de Riemann comienza con el análisis de las propiedades de la superficie de una esfera que se halla en un espacio de tres dimensiones, pero cuya superficie es de dimensión 2, es decir, una variedad 2-dimensional. La curvatura de esta superficie, así como la de otras, por ejemplo, una lámpara, se define casi de la misma forma que la curvatura de una curva en un plano euclidiano, con excepción de que las rectas (en forma de curvas) trazadas sobre las superficies tienen diferentes direcciones. Por eso la curvatura en un punto de una superficie se define como el producto de las curvaturas mayor y menor de todas las líneas que pasan por un punto fijo de la superficie. La curvatura de la superficie del planeta Tierra, por ejemplo, es positiva, ya que las curvaturas mayor y menor tienen el mismo signo, mientras que una superficie de curvatura negativa sería una silla de montar, ya que las curvaturas mayor y menor tienen signos diferentes. Estas curvaturas positivas o negativas han ayudado a los matemáticos a caracterizar dos tipos de geometrías no euclidianas: la elíptica de Riemann, con curvatura positiva y la hiperbólica de Lobachevski-Bolyai, con curvatura negativa. Además de estas caracterizaciones, Riemann agregó otra: la curvatura cero, correspondiente al espacio euclidiano.

Para continuar es necesario decir que las líneas en una superficie esférica son círculos máximos (latitud y longitud), que sirven de referencia para caracterizar las geodésicas, definidas como el camino de la distancia más corta entre dos puntos. Por ejemplo, en un espacio plano, un segmento de línea recta es considerado geodésica, mientras que en una esfera una geodésica es un arco de un círculo máximo como la ruta que siguen los aviones transoceánicos. En términos matemáticos, Riemann demostró que las propiedades básicas de un espacio curvo están determinadas por la fórmula de la distancia diferencial (ds)2=(dx)2+(dy)2+(dz)2, equivalente a la que se obtiene en un espacio euclidiano. Con la ayuda de esta distancia, definida cercanamente alrededor de un punto, Riemann demostró que las geodésicas son, efectivamente, las que tienen la distancia mínima entre dos puntos. Con esta aportación, el matemático alemán trazó redes geodésicas de espacios de dimensión mayor a tres y demostró que las curvaturas de dichos espacios adquieren signos negativos o positivos, comprobando, de esta manera, el carácter curvo de los espacios considerados.

Así nació lo que hoy conocemos como el espacio curvo de Riemann que contribuyó a la generalización de la Teoría de la Relatividad del físico Albert Einstein. Así como el matemático alemán encontró la curvatura de un espacio curvo, Einstein hizo lo mismo con la estructura del universo donde habitamos, al demostrar que es también un espacio curvo, y al agregar la variable tiempo al espacio tridimensional demostró que el espacio-tiempo adquiere la curvatura positiva. Demostró además que esta curvatura está condicionada por la masa de la materia: que, a mayor masa, mayor curvatura y que a menor masa, menor curvatura; que un cuerpo con masa menor se mueve necesariamente en la depresión ocasionada por el cuerpo de masa mayor sin que lleguen a chocar ambos cuerpos.

La generalización matemática realizada por Riemann sobre el concepto del espacio curvo, originado del estudio de la superficie terrestre, sobre la que caminamos diariamente, ha permitido al hombre comprender la estructura del universo. Se comprueba una vez más que las matemáticas basadas en la realidad física describen a ésta con mayor exactitud o puntualidad.


Escrito por Romeo Pérez

Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.


Notas relacionadas

El medio chino People's Daily dio a conocer al nuevo miembro de su equipo de noticias: Ren Xiaorong, una presentadora digital impulsada por inteligencia artificial (IA).

La vida de Henrik fue marcada por la pobreza, la fatalidad y la incomprensión; aun así, su mentalidad matemática, lo llevó a mostrar su genialidad, con ideas originales, mostrando caminos nuevos a los matemáticos de su época.

Ingenuity dispone de dos cámaras, una en blanco y negro para la navegación y otra en color, que está orientada para tomar imágenes del terreno.

"Durante esta administración empezamos muy mal desde que se decía que los científicos éramos la mafia. Todos los apoyos, hubo una reducción clara", afirmó el investigador Alfredo Herrera Estrella.

La intención es lograr un lente de material blando que logre un acercamiento, en un primer prototipo, de 32 por ciento con respecto a la visualización normal.

La Lluvia de Meteoros Delta Acuáridas será más visible en el hemisferio sur.

Al igual que todos los virus de ARN, los coronavirus tienden a mutar de manera muy frecuente.

Quizá la principal causa de la escasa participación de las mujeres en la ciencia sean los estereotipos de género que imperan en la sociedad y que dictan que las mujeres no cuentan con la capacidad o el derecho para hacer investigación.

Si la incidencia de plagas y enfermedades no acaba con los bosques, sí reduce significativamente su actividad fotosintética. En los tiempos que corren esto contribuye al calentamiento global.

Estamos entrando en una crisis mundial de salud que, de no atenderse adecuada y prontamente, podría dirigirnos a una época en la que las personas morirán por infecciones microbianas.

“Para los mexicanos, el maíz está entrelazado con su vida, su historia y sus tradiciones; no es solo un cultivo, sino el centro de su identidad", Sin embargo, hoy el maíz no cubre la demanda nacional, entre otras deficiencias.

Este gran matemático e inventor, dedicó sus últimos años a la docencia en la Biblioteca de Alejandría, sus obras están escritas al estilo de notas de clase de distintos temas: mecánica, geometría, óptica.

Mientras el trabajo matemático tiene reglas, axiomas, y su libertad está en función de estar gobernado por sistemas formales; en el trabajo filosófico...

Marx añade: “… por más que la mayor fuente de suicidios corresponda principalmente a la miseria, los encontramos en todas las clases, entre los ociosos ricos tanto como entre artistas y políticos”.

Considerado de los grandes matemáticos del S. XVIII, su mente no era la de un geómetra, era esencialmente analista. Newton, Euler y D’ Alembert, reconocieron que sus métodos analíticos los habían ayudado a entender problemas matemáticos.