Cargando, por favor espere...

Espacio curvo de Riemann (II de III)
Einstein hizo lo mismo con la estructura del universo donde habitamos, al demostrar que es también un espacio curvo.
Cargando...

En su disertación Sobre la hipótesis en la que subyacen los fundamentos de la geometría (1854), dicha en presencia de su asesor de tesis Carl Gauss, el matemático alemán Bernhard Riemann expuso los fundamentos de una nueva geometría que hoy es conocida como elíptica o riemanniana. En ese trabajo explicó su teoría del espacio curvo y que debió crear una herramienta conocida como variedad n dimensional para poder estudiar la curvatura de una superficie cualquiera de dimensión mayor o igual a 2. Sus resultados ayudaron a Albert Einstein a comprender la estructura geométrica del universo.

El estudio del espacio curvo de Riemann comienza con el análisis de las propiedades de la superficie de una esfera que se halla en un espacio de tres dimensiones, pero cuya superficie es de dimensión 2, es decir, una variedad 2-dimensional. La curvatura de esta superficie, así como la de otras, por ejemplo, una lámpara, se define casi de la misma forma que la curvatura de una curva en un plano euclidiano, con excepción de que las rectas (en forma de curvas) trazadas sobre las superficies tienen diferentes direcciones. Por eso la curvatura en un punto de una superficie se define como el producto de las curvaturas mayor y menor de todas las líneas que pasan por un punto fijo de la superficie. La curvatura de la superficie del planeta Tierra, por ejemplo, es positiva, ya que las curvaturas mayor y menor tienen el mismo signo, mientras que una superficie de curvatura negativa sería una silla de montar, ya que las curvaturas mayor y menor tienen signos diferentes. Estas curvaturas positivas o negativas han ayudado a los matemáticos a caracterizar dos tipos de geometrías no euclidianas: la elíptica de Riemann, con curvatura positiva y la hiperbólica de Lobachevski-Bolyai, con curvatura negativa. Además de estas caracterizaciones, Riemann agregó otra: la curvatura cero, correspondiente al espacio euclidiano.

Para continuar es necesario decir que las líneas en una superficie esférica son círculos máximos (latitud y longitud), que sirven de referencia para caracterizar las geodésicas, definidas como el camino de la distancia más corta entre dos puntos. Por ejemplo, en un espacio plano, un segmento de línea recta es considerado geodésica, mientras que en una esfera una geodésica es un arco de un círculo máximo como la ruta que siguen los aviones transoceánicos. En términos matemáticos, Riemann demostró que las propiedades básicas de un espacio curvo están determinadas por la fórmula de la distancia diferencial (ds)2=(dx)2+(dy)2+(dz)2, equivalente a la que se obtiene en un espacio euclidiano. Con la ayuda de esta distancia, definida cercanamente alrededor de un punto, Riemann demostró que las geodésicas son, efectivamente, las que tienen la distancia mínima entre dos puntos. Con esta aportación, el matemático alemán trazó redes geodésicas de espacios de dimensión mayor a tres y demostró que las curvaturas de dichos espacios adquieren signos negativos o positivos, comprobando, de esta manera, el carácter curvo de los espacios considerados.

Así nació lo que hoy conocemos como el espacio curvo de Riemann que contribuyó a la generalización de la Teoría de la Relatividad del físico Albert Einstein. Así como el matemático alemán encontró la curvatura de un espacio curvo, Einstein hizo lo mismo con la estructura del universo donde habitamos, al demostrar que es también un espacio curvo, y al agregar la variable tiempo al espacio tridimensional demostró que el espacio-tiempo adquiere la curvatura positiva. Demostró además que esta curvatura está condicionada por la masa de la materia: que, a mayor masa, mayor curvatura y que a menor masa, menor curvatura; que un cuerpo con masa menor se mueve necesariamente en la depresión ocasionada por el cuerpo de masa mayor sin que lleguen a chocar ambos cuerpos.

La generalización matemática realizada por Riemann sobre el concepto del espacio curvo, originado del estudio de la superficie terrestre, sobre la que caminamos diariamente, ha permitido al hombre comprender la estructura del universo. Se comprueba una vez más que las matemáticas basadas en la realidad física describen a ésta con mayor exactitud o puntualidad.


Escrito por Romeo Pérez

Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.


Notas relacionadas

Otras mujeres matemáticas también fueron importantes en la antigua Grecia; por ejemplo Aspacia de Alejandría (470-410 a. C.), pareja de Pericles.

¿Cuál es el carácter distintivo de la dialéctica? Pongamos el caso de la guerra, ¿es nociva o es perjudicial? Desde el punto de vista de la dialéctica, es indispensable saber qué guerra se está planteando. Aquí la verdad siempre es concreta.

A través de milenios hemos inventado más símbolos, creado más conceptos y conexiones conceptuales; pero en esencia el lenguaje matemático es parcial, no puede describir sentimientos, emociones, alegrías ni la poesía.

La humanidad debe ser capaz de evitar cualquier desastre que extinga la vida en la Tierra.

Escribir es, en un escenario de rapidez y polarización, un acto revolucionario, además, contribuye "a la memoria, la concentración o la asociación de ideas", sostuvo el profesor de Psicología.

Fueron 5,504 especies previamente desconocidas de virus las que se identificaron, entre ellas, al 'Taraviricota', que podría ser el eslabón perdido en la evolución de los virus ARN.

El club de los matemáticos está constituido por un conjunto de seres humanos con alta formación matemática y capaces de inventar nuevos teoremas.

México cerró su participación en el sexto lugar general de 55 naciones participantes.

La potencia del telescopio Hubble logró captar imágenes de la galaxia conocida como UGC 8091 que, según la NASA y la ESA, es parecida a una “bola de nieve” cósmica.

La noche del 14 de marzo, un astro brillante se teñía de rojo, era la Luna de sangre. 1610 años antes también lo hizo la Tierra, con la sangre de Hipatia.

“Las redes sociales en general son una amenaza para la salud mental de los menores”, declaró el alcalde de la ciudad de Nueva York, Eric Adams.

El método obtenido por el discípulo de Platón dio nacimiento formal al cálculo infinitesimal e influyó significativamente en los matemáticos posteriores a Eudoxo.

Sirvan estos dos ejemplos para que los estudiantes mexicanos despierten su interés por el desarrollo histórico de las fórmulas matemáticas.

El dilema de las redes sociales aborda el hecho de cómo el producto que las compañías “procesan” para lograr la obtención de fabulosas ganancias somos los mismos seres humanos.

Leonard Euler aún de avanzada edad y ciego, continuó su producción a un ritmo acelerado; en 1770 publica otra de sus obras más sobresalientes Introducción al álgebra, pedagógicamente impecable.