Cargando, por favor espere...
La matemática que hoy conocemos, es producto de un proceso evolutivo de cinco mil años. En sus inicios podemos considerarla como una protomatemática, el periodo en donde la matemática se establece muy parecido a lo que hoy llamamos matemática, nace hace dos mil 600 años en la antigua Grecia, con Tales de Mileto y Pitágoras; sin embargo, el primer sistema axiomático fue generado hace dos mil 300 años y ha sido un primer referente incluso para su enseñanza. Este primer sistema axiomático se ha mantenido vigente hasta el día de hoy en la enseñanza de la matemática, por su carácter intuitivo y avalado por la idea kantiana de que el conocimiento matemático es a priori, es decir, existe de manera natural independiente del ser humano. Sin embargo, a mediados del Siglo XIX nacen otros mundos geométricos (no intuitivos) y otras herramientas algebraicas que generan nuevos mundos de interpretación conceptual, que ponen en duda la tesis kantiana del aproísmo. Sumado a esto, nacen algunas paradojas matemáticas que no tenían explicación y que llegan a constituir discusiones filosófico-matemáticas de la naturaleza de los objetos matemáticos.
En la primera mitad del Siglo XX aparece el fenómeno de la masificación de la educación matemática, periodo en que la matemática entra en la revolución del formalismo hilbertiano, que cambia el paradigma axiomático griego a un sistema formal de axiomas inventados por el ser humano, con el único requisito de que deben ser consistentes. Esta nueva epistemología le dio una libertad al matemático para generar nuevos mundos matemáticos e incorporar a las geometrías no euclidianas y otros objetos no intuitivos a su trabajo. Además, se produjeron sistemas axiomáticos al estilo hilbertiano que pretendían reformular toda la matemática conocida; en base de estos sistemas, se prescinde del contenido histórico filosófico del contenido matemático y también de la base intuitiva geométrica, tan habitual en el trabajo matemático anterior, quedando esto último como herramienta pedagógica hasta el día de hoy.
Por los años 70 nace la idea de la transposición didáctica, que es un proceso de recrear el conocimiento matemático y convertirlo en objeto de aprendizaje. Si bien es cierto que este proceso pedagógico-psicológico es importante en el proceso de asimilación del contenido matemático, también es cierto que se incurre en la imposibilidad de presentar una matemática real, así como lo ven los matemáticos de hoy en día. Por ejemplo, no es posible transponer conceptos básicos como los números naturales. Para un pedagogo, los números naturales son casi objetos concretos de conteo y no cuentan al cero como número natural. Sería muy complejo explicar a los niños o jóvenes que en realidad los números naturales son producto de aceptar el axioma del conjunto inductivo y demostrar que el conjunto inductivo más pequeño es llamado el conjunto de los números naturales –es la concepción actual de los números naturales–, en donde se incluye al cero como número natural, como aquel objeto que no es sucesor de otro, además se construye en base a la existencia del conjunto vacío. La concepción de conjunto, como idea de pluralidad contradice a la idea pedagógica de un conjunto sin elementos; hoy en día es posible demostrar la existencia de un conjunto sin elementos que llamamos vacío. Transponer esta idea matemática es muy compleja, porque no poseemos una definición de conjunto. Así podemos enumerar una serie de conceptos, desde los más básicos hasta los de nivel universitario, en que no es posible transponer la verdadera matemática; sólo es posible recrear el llamado “discurso matemática escolar” para fines pedagógicos y educativos, pero no para estudiar la verdadera matemática, que es compleja, producto de la evolución de miles de años y que hoy está rigurosamente fundamentada con base en la axiomática formal hilbertiana, que para poder comprender esto se requiere años de formación y que resulta quizás innecesaria para formar futuros ciudadanos, cuyo objetivo es disciplinar la mente humana, entender las herramientas matemáticas útiles para la toma de decisiones, entender el mundo que los rodea. Además de formarlos en principios y valores humanos y que el trabajo matemático tiene para aportar a la educación.
En 1921, Walter Benjamin adquirió un cuadro del “pintor expresionista Paul Klee titulado Angelus Novus , en el que podemos ver un ángel que parece petrificado en el tiempo y el espacio.
Los modos del pensamiento matemático influyen en su hacer, el Siglo XX ha sido testigo de al menos dos formas de este hacer, con marcada influencia ideológica.
En San Pedro de Conchos acaba de despejarse finalmente el sitio exacto donde se asentó la segunda misión franciscana de Chihuahua: a un lado de este templo y sobre un área del municipio de Rosales, del que San Pedro es sección municipal.
El ser humano ha entendido las diferentes formas de vida a través de la observación, distinguiendo las similitudes y diferencias de los organismos.
Lenin es seguramente el nombre propio sobre el que más se han vertido carretadas de desinformación
En este artículo se explica por qué sostener que el arte es un reflejo de la sociedad, así a secas, distorsiona y mutila el papel de la actividad artística y de los artistas.
Los métodos de investigación de Kepler, fueron cuestionados por el mismo Galileo Galilei por su misticismo e ideas que mezclaban la ciencia con la religión.
El próximo 21 de enero, el ingeniero Aquiles Córdova impartirá la conferencia "Lenin: Vigencia de su pensamiento a 100 años de su muerte", en el Auditorio Metropolitano de la ciudad de Puebla.
La bacteria P. luminiscens actuó sobre las heridas de los soldados como un como un antibiótico muy eficaz, lo que explica por qué las heridas fluorescentes sanaban más rápido que las heridas sin la bacteria fluorescente. Seguramente, esta bacteria salvó la vida de varios soldados, ¿cómo pasó?
Los judíos del mundo deben hacer conciencia de que el imperialismo los está usando de parapeto para sus propósitos expoliadores. Si no se detiene su voracidad insaciable, seguirán siendo sus hijos los que entreguen sus vidas en Gaza.
Empresarios y trabajadores han comenzado a abandonar el puerto de Acapulco, en Guerrero, tras un año del huracán "Otis".
Esta biografía resalta los rasgos de carácter más sobresalientes del general Vicente Guerrero: su inquebrantable voluntad de lucha.
Un siglo después, las tesis centrales de Imperialismo, fase superior del capitalismo mantienen plenamente su vigencia.
Hoy día, Azucena Cordero cursa el séptimo semestre de la carrera de ingeniería en Gestión Empresarial. Su disciplina, tenacidad y voluntad la llevaron a colocar muy en alto el nombre del Instituto Tecnológico de Tecomatlán.
Toda afirmación en matemática es siempre referida a un determinado sistema formal.
Migración, cárteles, aranceles y política de género: primeras órdenes ejecutivas de Trump
Empresarios mexicanos alertan por el regreso de Trump
Conato de incendio provoca caos en Paseo de la Reforma
Detienen y procesan a Cristofer "N" por el feminicidio de Karla Cortés, conductora de Uber
¿Por qué no se puede dividir por cero?
Trump confirma que sí impondrá aranceles del 25% a productos mexicanos
Escrito por Dr. Esptiben Rojas Bernilla
Colaborador