Cargando, por favor espere...
La matemática que hoy conocemos, es producto de un proceso evolutivo de cinco mil años. En sus inicios podemos considerarla como una protomatemática, el periodo en donde la matemática se establece muy parecido a lo que hoy llamamos matemática, nace hace dos mil 600 años en la antigua Grecia, con Tales de Mileto y Pitágoras; sin embargo, el primer sistema axiomático fue generado hace dos mil 300 años y ha sido un primer referente incluso para su enseñanza. Este primer sistema axiomático se ha mantenido vigente hasta el día de hoy en la enseñanza de la matemática, por su carácter intuitivo y avalado por la idea kantiana de que el conocimiento matemático es a priori, es decir, existe de manera natural independiente del ser humano. Sin embargo, a mediados del Siglo XIX nacen otros mundos geométricos (no intuitivos) y otras herramientas algebraicas que generan nuevos mundos de interpretación conceptual, que ponen en duda la tesis kantiana del aproísmo. Sumado a esto, nacen algunas paradojas matemáticas que no tenían explicación y que llegan a constituir discusiones filosófico-matemáticas de la naturaleza de los objetos matemáticos.
En la primera mitad del Siglo XX aparece el fenómeno de la masificación de la educación matemática, periodo en que la matemática entra en la revolución del formalismo hilbertiano, que cambia el paradigma axiomático griego a un sistema formal de axiomas inventados por el ser humano, con el único requisito de que deben ser consistentes. Esta nueva epistemología le dio una libertad al matemático para generar nuevos mundos matemáticos e incorporar a las geometrías no euclidianas y otros objetos no intuitivos a su trabajo. Además, se produjeron sistemas axiomáticos al estilo hilbertiano que pretendían reformular toda la matemática conocida; en base de estos sistemas, se prescinde del contenido histórico filosófico del contenido matemático y también de la base intuitiva geométrica, tan habitual en el trabajo matemático anterior, quedando esto último como herramienta pedagógica hasta el día de hoy.
Por los años 70 nace la idea de la transposición didáctica, que es un proceso de recrear el conocimiento matemático y convertirlo en objeto de aprendizaje. Si bien es cierto que este proceso pedagógico-psicológico es importante en el proceso de asimilación del contenido matemático, también es cierto que se incurre en la imposibilidad de presentar una matemática real, así como lo ven los matemáticos de hoy en día. Por ejemplo, no es posible transponer conceptos básicos como los números naturales. Para un pedagogo, los números naturales son casi objetos concretos de conteo y no cuentan al cero como número natural. Sería muy complejo explicar a los niños o jóvenes que en realidad los números naturales son producto de aceptar el axioma del conjunto inductivo y demostrar que el conjunto inductivo más pequeño es llamado el conjunto de los números naturales –es la concepción actual de los números naturales–, en donde se incluye al cero como número natural, como aquel objeto que no es sucesor de otro, además se construye en base a la existencia del conjunto vacío. La concepción de conjunto, como idea de pluralidad contradice a la idea pedagógica de un conjunto sin elementos; hoy en día es posible demostrar la existencia de un conjunto sin elementos que llamamos vacío. Transponer esta idea matemática es muy compleja, porque no poseemos una definición de conjunto. Así podemos enumerar una serie de conceptos, desde los más básicos hasta los de nivel universitario, en que no es posible transponer la verdadera matemática; sólo es posible recrear el llamado “discurso matemática escolar” para fines pedagógicos y educativos, pero no para estudiar la verdadera matemática, que es compleja, producto de la evolución de miles de años y que hoy está rigurosamente fundamentada con base en la axiomática formal hilbertiana, que para poder comprender esto se requiere años de formación y que resulta quizás innecesaria para formar futuros ciudadanos, cuyo objetivo es disciplinar la mente humana, entender las herramientas matemáticas útiles para la toma de decisiones, entender el mundo que los rodea. Además de formarlos en principios y valores humanos y que el trabajo matemático tiene para aportar a la educación.
La población local las denomina Cuarenta Casas, Casas del Acantilado y Cuevas de Águila, su origen histórico data del Siglo XII y sus vestigios arqueológicos las emparentan con la cultura prehispánica de Paquimé.
Paul Erdós colaboró con tantos matemáticos que dio origen al famoso “número de Erdós”.
A Pitágoras se le atribuye la idea conceptual de “primo”.
Hoy día, Azucena Cordero cursa el séptimo semestre de la carrera de ingeniería en Gestión Empresarial. Su disciplina, tenacidad y voluntad la llevaron a colocar muy en alto el nombre del Instituto Tecnológico de Tecomatlán.
Actualmente, se ha reducido la enseñanza del deporte a los primeros niveles educativos. Se pretende que la educación sirva a los fines propagandísticos del gobierno de la 4T.
El mundo está saturado de imágenes y la realidad misma ha perdido significado. Cada individuo se enfoca en su imagen y en agradar a los demás; esto ha permitido que se deje de pensar en lo que ocurre alrededor, que se deje de valorar también lo que está delante.
Fue el máximo dirigente del Partido Comunista Chino y fundador de la República Popular China en 1949, tras su victoria en la Guerra Civil contra las fuerzas de Chiang Kai Shek, quien se exilió a la isla de Taiwan, creando la China Nacionalista.
Fue nombrado miembro de la Real Academia de Ciencias Exactas, Físicas y Naturales en 1983; entre 1991 y 1993 fue presidente de la Comisión Internacional de Instrucción Matemática (ICMI).
La lectura atenta de estas páginas sugiere que el gran guerrillero Vicente Guerrero vio en Agustín de Iturbide y Arámburu un genuino sentimiento de nacionalismo mexicano.
La brujería surgió junto con los dioses más antiguos y se ha mantenido desde entonces.
El fortuito descubrimiento del llamado Tesoro de Moctezuma permitió al laborioso y honesto pescador de Boca del Río vivir una serie de peripecias a las que de otro modo jamás habría accedido.
Los objetos matemáticos, como constructos, se conciben en la mente humana; para ello se debe tener una idea precisa para formalizarlos y que luego emerjan sus propiedades.
En la primera mitad del Siglo XX aparece el fenómeno de la masificación de la educación matemática, periodo en que la matemática entra en la revolución del formalismo hilbertiano.
El Centro Nacional de Investigaciones Científicas (CNRS) francés sostuvo que en plena selva amazónica descubrió una “extensa red de ciudades de dos mil 500 años de antigüedad”.
Dos amigos de Hegel requieren especial mención: Förster y Gans.
Escrito por Dr. Esptiben Rojas Bernilla
Colaborador