Cargando, por favor espere...

Los objetos matemáticos y la realidad
Hablar de la existencia de la realidad ha sido un problema filosófico muy discutido. En este contexto, qué tipo de realidad es un objeto matemático, es una pregunta que abordaremos en este artículo.
Cargando...

Cuando nos referimos a la realidad, deberíamos definir lo que entendemos por la existencia de un objeto o ente como decían los griegos. Hablar de la existencia de la realidad es un problema filosófico ampliamente discutido a través de la historia. Dentro de este contexto, qué tipo de realidad es un objeto matemático, es una pregunta que abordaremos en este artículo.

Muchos creen que los objetos matemáticos se encuentran fuera del ser humano, argumentando que, si no existiera el ser humano, igual existiría el sol y la luna como objetos redondos, y ahí estaría el objeto matemático círculo o esfera (de acuerdo a la perspectiva). Estas personas están convencidas que al mirar un objeto materializable (por entrar en contacto con los sentidos) de forma esférica o cúbica, este es un objeto matemático. Por lo tanto, cuando toman conocimiento de resultados matemáticos contraintuitivos, por ejemplo, la paradoja de Banach-Tarski (en donde una esfera es posible reconstruirla para formar dos esferas del mismo tamaño), no lo pueden explicar o entender. Esto se debe a que confunden objetos materializables con los objetos matemáticos.

Hay varias formas de concebir la realidad, una de ellas es a través de nuestros sentidos, otra es a través del efecto o interacción con nosotros, por ejemplo, la fuerza de gravedad, las ondas electromagnéticas etc., aunque no podemos percibirlo por nuestros sentidos, igual sabemos que existen por los efectos que ellos manifiestan. Sin embargo, existe otro tipo de realidad, que no es percibido por nuestros sentidos, y no interactúan con nosotros, por ejemplo, los objetos matemáticos; un triángulo es un constructo mental, una invención que no se percibe por nuestros sentidos, ni actúa con nosotros, solo existe de manera conceptual en la mente humana. Para efectos de comunicar esta idea, creamos pictogramas que se semejen al triángulo, pero como objeto material no existe. Estos pictogramas, son útiles en la enseñanza, y hasta como elementos heurísticos para descubrir sus propiedades, para ello hay que someterlo a algún sistema formal (otra invención).

Un constructo mental, para llamarlo objeto matemático tiene que tener asociado un sistema formal y además un cerebro que lo interprete conceptualmente, de lo contrario solo sería un dibujo. Por lo tanto, sin seres humanos (matemáticos), la luna y el sol, aunque tengan la forma redonda, solo serán objetos materiales cuyas formas tendrán valor artístico, pero no constituyen un objeto matemático.

La realidad matemática va más allá de la realidad material, es por ello que transmitir matemática es complejo, es necesario entrenamiento y formación. Para transmitirlo, debemos situarnos en un contexto y tener en cuenta su propósito, por ejemplo, en educación, la transmisión tiene un propósito de formar un ciudadano, por ello que debemos auxiliarnos de elementos heurísticos (gráficos, material concreto, símbolos adecuados, etc.) pero estos materiales solo dan la idea aproximada de los objetos matemáticos.

Daré un ejemplo que nos grafica la complejidad de transmitir los conocimientos matemáticos: Cómo hacemos entender la existencia de la √2. El método pedagógico es asociarlo con la recta real, sin embargo, ningún humano es capaz de ubicar exactamente al punto de la recta que corresponde a la √2. Aunque nos acerquemos hasta los átomos del dibujo de la recta, lleguemos a las partículas sub atómicas (sabemos hoy día que existe entre ellas un espacio vacío) no podemos encontrar exactamente el punto que sea asociado a la  √2. Por lo tanto, ¿cómo sabemos que existe? Lo que pasa es que confundimos como isovalente al objeto material, recta dibujada en el papel, con el objeto matemático conjunto de números reales, que solo existe en la mente humana, como una ficción. Por consiguiente, un punto es asociado con √2 como ficción es decir como constructo mental. No es posible asociarlo de manera material con los puntos de la recta (dibujo), sin embargo, lo enseñamos así, como recurso didáctico, nos valemos de la intuición humana, que como ya hemos afirmado (anterior artículo) en matemática no es garantía de una verdad. En matemática se demuestra fehacientemente que √2 existe, pero no es posible materializarlo. Es complejo enseñar matemática, no es fácil y lúdico como nos hacen creer, pero se puede facilitar el entendimiento, teniendo claro el propósito de su enseñanza.


Escrito por Dr. Esptiben Rojas Bernilla

Colaborador


Notas relacionadas

Si la incidencia de plagas y enfermedades no acaba con los bosques, sí reduce significativamente su actividad fotosintética. En los tiempos que corren esto contribuye al calentamiento global.

Charles convence a su hija de que acepte los títulos al portador de una empresa “fantasma”, quien está controlada por Mossack y Fonseca

Los problemas de la humanidad se agudizarán; en primer lugar, por la falta de alimentos ya que, con suelos destruidos o empobrecidos.

Investigadores, indican que hace dos millones de años los primeros humanos tenían la capacidad y la tecnología necesarias para explotar de forma continua una variedad de hábitats cambiantes.

La irracionalidad ayuda al hombre a comprender la continuidad y la discontinuidad de la materia.

Para muchos, un trasplante es su única opción para salvarse ante enfermedades como cirrosis hepática, enfermedad pulmonar obstructiva crónica, leucemia, entre muchas otras. No obstante, es necesaria la existencia de donantes.

Con una longitud de 11 kilómetros de largo y siete metros de alto, China tiene la autopista submarina más larga del mundo, denominada Taihu.

Euclides concentró todo el conocimiento matemático creado por los filósofos y matemáticos anteriores a él, entre ellos Eudoxo y Aristóteles.

En recientes días hemos escuchado sobre la “nueva amenaza” que acecha las zonas costeras del Golfo de México, la superbacteria “carnívora” Vibro vilmificus; la mayoría de sus víctimas mortales fueron pacientes con problemas hepáticos.

Que la energía cinética (antes llamada fuerza viva) representa el cambio del movimiento mecánico en otra forma de movimiento.

El gran pensador griego demuestra que el continuo no puede estar hecho de un conjunto de indivisibles (átomos) o de puntos (“aquello indivisible en partes”), como lo habían planteado Leucipo, Demócrito y Euclides.

Se ha demostrado que aunque no es un alimento completo por sí solo, los productos comestibles a base de maíz aportan grandes beneficios para la salud humana.

Invadiendo el mundo, es una cinta que exhibe con nitidez escenas racistas sobresalientes como la que provocó la muerte del afroamericano George Floyd en Minneapolis.

Hace alrededor de 100 mil años se hicieron las primeras modificaciones a algunas herramientas que permitieron la sobrevivencia, y para lograrlo el lenguaje numérico fue fundamental.

Las lombrices desempeñan un papel fundamental en la producción de granos; sin ellas no podríamos comer pan dulce ni esos deliciosos bolillos recién horneados o tortillas recién salidas del comal.