Cargando, por favor espere...

Los objetos matemáticos y la realidad
Hablar de la existencia de la realidad ha sido un problema filosófico muy discutido. En este contexto, qué tipo de realidad es un objeto matemático, es una pregunta que abordaremos en este artículo.
Cargando...

Cuando nos referimos a la realidad, deberíamos definir lo que entendemos por la existencia de un objeto o ente como decían los griegos. Hablar de la existencia de la realidad es un problema filosófico ampliamente discutido a través de la historia. Dentro de este contexto, qué tipo de realidad es un objeto matemático, es una pregunta que abordaremos en este artículo.

Muchos creen que los objetos matemáticos se encuentran fuera del ser humano, argumentando que, si no existiera el ser humano, igual existiría el sol y la luna como objetos redondos, y ahí estaría el objeto matemático círculo o esfera (de acuerdo a la perspectiva). Estas personas están convencidas que al mirar un objeto materializable (por entrar en contacto con los sentidos) de forma esférica o cúbica, este es un objeto matemático. Por lo tanto, cuando toman conocimiento de resultados matemáticos contraintuitivos, por ejemplo, la paradoja de Banach-Tarski (en donde una esfera es posible reconstruirla para formar dos esferas del mismo tamaño), no lo pueden explicar o entender. Esto se debe a que confunden objetos materializables con los objetos matemáticos.

Hay varias formas de concebir la realidad, una de ellas es a través de nuestros sentidos, otra es a través del efecto o interacción con nosotros, por ejemplo, la fuerza de gravedad, las ondas electromagnéticas etc., aunque no podemos percibirlo por nuestros sentidos, igual sabemos que existen por los efectos que ellos manifiestan. Sin embargo, existe otro tipo de realidad, que no es percibido por nuestros sentidos, y no interactúan con nosotros, por ejemplo, los objetos matemáticos; un triángulo es un constructo mental, una invención que no se percibe por nuestros sentidos, ni actúa con nosotros, solo existe de manera conceptual en la mente humana. Para efectos de comunicar esta idea, creamos pictogramas que se semejen al triángulo, pero como objeto material no existe. Estos pictogramas, son útiles en la enseñanza, y hasta como elementos heurísticos para descubrir sus propiedades, para ello hay que someterlo a algún sistema formal (otra invención).

Un constructo mental, para llamarlo objeto matemático tiene que tener asociado un sistema formal y además un cerebro que lo interprete conceptualmente, de lo contrario solo sería un dibujo. Por lo tanto, sin seres humanos (matemáticos), la luna y el sol, aunque tengan la forma redonda, solo serán objetos materiales cuyas formas tendrán valor artístico, pero no constituyen un objeto matemático.

La realidad matemática va más allá de la realidad material, es por ello que transmitir matemática es complejo, es necesario entrenamiento y formación. Para transmitirlo, debemos situarnos en un contexto y tener en cuenta su propósito, por ejemplo, en educación, la transmisión tiene un propósito de formar un ciudadano, por ello que debemos auxiliarnos de elementos heurísticos (gráficos, material concreto, símbolos adecuados, etc.) pero estos materiales solo dan la idea aproximada de los objetos matemáticos.

Daré un ejemplo que nos grafica la complejidad de transmitir los conocimientos matemáticos: Cómo hacemos entender la existencia de la √2. El método pedagógico es asociarlo con la recta real, sin embargo, ningún humano es capaz de ubicar exactamente al punto de la recta que corresponde a la √2. Aunque nos acerquemos hasta los átomos del dibujo de la recta, lleguemos a las partículas sub atómicas (sabemos hoy día que existe entre ellas un espacio vacío) no podemos encontrar exactamente el punto que sea asociado a la  √2. Por lo tanto, ¿cómo sabemos que existe? Lo que pasa es que confundimos como isovalente al objeto material, recta dibujada en el papel, con el objeto matemático conjunto de números reales, que solo existe en la mente humana, como una ficción. Por consiguiente, un punto es asociado con √2 como ficción es decir como constructo mental. No es posible asociarlo de manera material con los puntos de la recta (dibujo), sin embargo, lo enseñamos así, como recurso didáctico, nos valemos de la intuición humana, que como ya hemos afirmado (anterior artículo) en matemática no es garantía de una verdad. En matemática se demuestra fehacientemente que √2 existe, pero no es posible materializarlo. Es complejo enseñar matemática, no es fácil y lúdico como nos hacen creer, pero se puede facilitar el entendimiento, teniendo claro el propósito de su enseñanza.


Escrito por Dr. Esptiben Rojas Bernilla

Colaborador


Notas relacionadas

La humanidad debe ser capaz de evitar cualquier desastre que extinga la vida en la Tierra.

Antes se creía que el parecido entre los fósiles y los seres vivos era gracias a un espíritu animador o vegetativo. Fue gracias al médico Niels Steensen que se reconoció la pertenencia de fósiles a seres vivos.

Von Neumann fue considerado como superdotado, ya que desde los seis años ya sabía dividir, hablar griego antiguo, francés, alemán y latín, y a sus ocho años ya dominaba el cálculo diferencial e integral.

Investigadores, indican que hace dos millones de años los primeros humanos tenían la capacidad y la tecnología necesarias para explotar de forma continua una variedad de hábitats cambiantes.

Otras mujeres matemáticas también fueron importantes en la antigua Grecia; por ejemplo Aspacia de Alejandría (470-410 a. C.), pareja de Pericles.

"Durante esta administración empezamos muy mal desde que se decía que los científicos éramos la mafia. Todos los apoyos, hubo una reducción clara", afirmó el investigador Alfredo Herrera Estrella.

Estableció formalmente la continuidad de la recta real, definiendo un número real por medio de un dispositivo llamado cortadura.

Arquímedes se había adelantado a los matemáticos de mediados y último tercio del Siglo XVII como Cavalieri, Pascal, Newton y Bernoulli.

¿Cómo producir frutas y verduras sin químicos que dañen nuestra salud y la de las demás especies de seres vivos? Recientemente encontré el libro "Regénesis. Alimentar al mundo sin devorar el planeta", de George Monbiot.

La 4T presume que sus políticas están encaminadas a alcanzar la soberanía alimentaria, sin embargo, se han eliminado los apoyos de comercialización y programas que aseguraban un ingreso para los campesinos.

Los problemas personales no afectaron su brillante carrera académica; su jornada incluía largas horas de concentración.

Este fenómeno tiene graves consecuencias para el medio ambiente. Elimina la capa de protección de las plantas, dejándolas desprotegidas a la acción del viento, el frío, la sequía y convirtiéndolas en presa fácil de los parásitos o plagas, que provocan su muerte.

La geometría no es una forma de la intuición a priori, como afirmaba Kant, sino una construcción lógica. Estos argumentos fueron la base de la famosa escuela llamada "positivismo lógico".

Las matemáticas dieron orden al caos. Dan certeza en el momento que se vive y ayudan a comprender y medir los fenómenos que rodean a las personas.

“Aproximadamente el 70 por ciento de los cinco mil 200 millones de hectáreas de tierras secas que se utilizan en agricultura o ganadería está degradada y amenazada por la desertificación”.

Edición impresa

Editorial

Guerrero, entidad fuera de control


La rabia y la indignación, así como la exigencia de justicia y acción rápida de las autoridades correspondientes son resultado de la actitud omisa del gobierno del estado.

Síguenos en Facebook


Poesía

Sociedad anónima

Sociedad Anónima 1129