Cargando, por favor espere...
Gran parte del trabajo matemático radica en establecer conexiones o puentes entre objetos matemáticos de naturaleza distinta. Por ejemplo, la recta geométrica como objeto matemático tiene una naturaleza distinta a los números; generar una isovalencia entre ellos tardó 25 siglos de desarrollo matemático. En todo este periodo, no toda parte de una recta geométrica era susceptible de asociarle una magnitud (medida), por ejemplo, no se podía medir con exactitud la hipotenusa de un triángulo rectángulo cuyos catetos miden una unidad. Sólo era posible establecer una aproximación, y no el número concreto asociado a esta hipotenusa. Estas cosas generaron el siguiente problema: Si pretendemos asociar o identificar los puntos de la recta geométrica con los números (hasta la primera mitad del Siglo XIX, sólo se consideraban números a los enteros y a los racionales), es suficiente fijar un punto en la recta geométrica y una unidad de medida para llevar a cabo la asociación deseada. Primeramente, al punto fijo se le asocia el número cero, y con la unidad establecida se asocia a la derecha del cero el 1, luego el 2 y así sucesivamente, y a la izquierda del cero con la misma unidad de medida se va asociando el -1, luego el -2, y así sucesivamente. Incluso las fracciones tienen un lugar en la recta geométrica. Todo este trabajo es muy relativo al punto fijo elegido y a la unidad establecida, no existe una asociación absoluta de tales objetos (puntos y números), desde ahí existe un problema de inexactitud y constituye un ejemplo para demostrar que la matemática no es algo exacto como se cree, sino siempre relativa a un contexto matemático; para pretender una exactitud tenemos que formalizar cada acto como una invención humana.
Podemos preguntarnos ¿qué punto le corresponde a la longitud de la hipotenusa de un triángulo rectángulo de catetos que miden la unidad? Es decir, será posible ubicar lo que hoy llamamos en una recta geométrica de manera exacta, ¿quién puede hacerlo? Dudo que exista un ser humano que pueda ubicar el punto exacto que le corresponde. Se establece una ruptura cognitiva, que hasta el día de hoy persiste, debido a las limitaciones de la mente humana. Este problema fue resuelto desde el punto de vista matemático por Richard Dedekind en 1878, desde este momento fue posible conectar biyectivamente los puntos de la recta geométrica y los números que por primera vez incluían a los irracionales , , es decir, estos hoyos que poseía la recta geométrica fueron cubiertos por estos nuevos objetos numéricos, técnicamente se le llama completación de la recta real. Pasó a ser la recta geométrica un objeto continuo, identificable cada uno de sus puntos con un número real, dando un fundamento riguroso al concepto de límite o punto de acumulación en la recta y así fundamentar el naciente análisis matemático.
Hoy en día se ha establecido en el discurso matemático escolar esta asociación entre los puntos de la recta geométrica y los números reales, apelando a la intuición de los estudiantes se ubica a estos números irracionales en la recta geométrica. Por supuesto que la intuición no es ninguna garantía de certeza, humanamente seguimos sin ubicar exactamente el punto que corresponde a los números irracionales. Aquí existe algo inalcanzable para la mente humana.
La forma en que matemáticamente hemos dado existencia a los números irracionales ha sido con base en la idea de convergencia o aproximación, es decir, la formalización de una idea muy antigua, debido al griego Eudoxio y luego refinada por Agustín Cauchy y Karl Weierstrass, hemos tratado de capturar conceptualmente lo arbitrariamente pequeño mediante una definición formal. De esa manera, Richard Dedekind, con sus famosas cortaduras, y luego George Cantor, con su convergencia de sucesiones de Cauchy de racionales, dieron existencia a objetos matemáticos que existen en lo formal, pero que su naturaleza ontológica aún queda en el limbo de la mente humana.
En este sentido, la concepción ficcionalista de los objetos matemáticos, en particular de los números irracionales, recobra sentido, esclarece su naturaleza y nos permite ver a la matemática como un gran constructo cuya existencia sólo se encuentra en la mente humana.
A Pitágoras se le atribuye la idea conceptual de “primo”.
Harald Helfgott saltó a la fama mundial en 2012 cuando presentó a la comunidad matemática la demostración de la conjetura débil de Goldbach.
Félix Klein y su Programa Erlangen
El Premio Abel puede considerarse como el premio Nobel para matemáticos.
Un grupo de brillantes matemáticos franceses, autodenominado Bourbaki desarrolló, desde las primeras décadas del Siglo XX, un programa fundacional de la matemática con gran influencia en el trabajo matemático contemporáneo.
Luca Pacioli fue matemático, contador y profesor universitario.
Toda investigación no es necesariamente científica, a veces se confunde con investigación tecnológica, o peor, con informes técnicos. Aclararemos estas confusiones en este artículo.
Es considerado el más prolífico de los matemáticos; su nombre figura en fórmulas, teoremas, números, integrales y constantes en distintas ramas de la matemática.
No vamos a juzgar la vida privada de este gran científico, la reflexión es aprender a separar los logros científicos de una persona y sus debilidades humanas.
Uno de los conceptos que más ha apasionado a los seres humanos es la idea de infinito.
Es posible crear una matemática filosófica desde el hacer de un matemático que sea realmente relevante y visionaria. Debe de ser una reflexión humanizante, pero a la vez esclarecedora del mundo de las ideas formales.
El Siglo XXI es de la comunicación matemática, espero que en el futuro se sumen una mayor cantidad de divulgadores y difusores del conocimiento matemático, así la contribución para nuestra sociedad será enorme, entre sus muchos beneficios, porque mejorará la educación ciudadana.
La matemática del Siglo XVIII se caracteriza por su falta de rigor, por carecer de un cuerpo teórico para hacer a las nuevas herramientas matemáticas más eficientes.
Los modos del pensamiento matemático influyen en su hacer, el Siglo XX ha sido testigo de al menos dos formas de este hacer, con marcada influencia ideológica.
La matemática es un producto cultural.
Toma protesta nuevo director de la DICEA en Chapingo
El 64.3% de mexicanos sin ingresos suficientes para adquirir la canasta básica
A huelga 28 preparatorias de la CDMX
Hallan 249 fosas clandestinas en Colima durante gobierno morenista
UAM supera a IPN en ranking de las mejores universidades de México
Gaseros alistan paro nacional a 4 años de Gas Bienestar sin utilidades
Escrito por Dr. Esptiben Rojas Bernilla
Colaborador