Cargando, por favor espere...

La geometría de los fractales y sus implicaciones
La naturaleza es compleja y se manifiesta de muchas formas. Uno de los instrumentos para estudiar dichas formas es la geometría
Cargando...

La naturaleza es compleja y se manifiesta de muchas formas. Uno de los instrumentos para estudiar dichas formas es la geometría, gracias a la que el ser humano se ha acercado mucho para comprenderlas mejor.

Nikolái Lobachevski, el gran geómetra ruso, defendía la premisa de que la geometría es en esencia movimiento, que se aprecia en el crecimiento de una planta, la distribución de los pétalos de las flores, la trayectoria de vuelo de un ave, el recorrido de un jabalí, etc. La ciencia actual ha dividido el estudio de estos movimientos en tres grandes campos de la matemática: la geometría euclidiana (plana), la lobachevskiana (hiperbólica) y la riemanniana (elíptica).

Sin embargo, estas ramas de la matemática no han podido describir de forma completa la diversidad de objetos y movimientos en la naturaleza. En tal caso se hallan las formas de la orilla de las hojas del helecho, del brócoli, las líneas costeras, las nubes, las montañas y muchos otros objetos que son complicados de describir con las geometrías existentes. Este problema hizo posible el surgimiento de un instrumento de esta ciencia conocida hoy como la geometría de los fractales, que se encarga de estudiar fenómenos y objetos fragmentados o fracturados que se repiten a escala mayor o menor, manteniendo una copia, casi exacta, de su estructura original.

Las irregularidades y patrones fragmentados presentes en la naturaleza fueron estudiados por primera vez por el matemático francés Henri Poincaré (1854-1912), cuando se encontró con los sistemas dinámicos. Posteriormente, el sueco Helge von Koch (1870-1924), en su artículo Acerca de una curva continua que no posee tangentes y que se obtiene por medio de los métodos de la geometría elemental, dio a conocer su resultado sobre el llamado “copo de nieve de Koch” o “estrella de Koch”, una curva infinita, continua y cerrada que encierra una superficie finita. La construcción se hace dividiendo cada lado de un triángulo equilátero en tres segmentos iguales, y sobre cada segmento central se construye otro triángulo equilátero (obteniendo al final una figura parecida a una estrella de David); y así sucesivamente hasta aproximarse a una figura similar a un copo de nieve.

El matemático polaco Waclaw Sierpínski (1882-1969) también trabajó en el tema de los fractales y es conocido por el triángulo que lleva su nombre, que consiste en dividir un triángulo en tres triángulos congruentes (iguales). Cada uno de esos triángulos, a su vez, se divide en otros tres triángulos congruentes, y así sucesivamente.

El francés Gaston Julia (1893-1978) fue otro de los matemáticos que hizo también contribuciones a la teoría de los fractales: generalizó esta teoría al plano complejo y en éste construyó su conjunto, conocido como “Conjunto de Julia”, que se obtiene a partir de cualquier función compleja. La longitud de la figura formada por dicha función es infinita. Este resultado puede encontrarse en su trabajo Informe sobre la iteración de las funciones racionales, publicado en la revista francesa de matemáticas Journal de Mathématiques Pures et Appliquées.

Otro científico que incursionó en el tema fue el matemático y meteorólogo estadounidense Edward Lorenz (1917-2008), con las Órbitas caóticas o atractor caótico de Lorenz, acuñado en 1963, que no se trata más que de un sistema dinámico determinístico tridimensional no lineal presente en la atmósfera terrestre.

Sin embargo, fue el polaco Benoit Mandelbrot (1924-2010), quien sistematizó por primera vez la geometría de los fractales. Continuó con el estudio de las propiedades de los fractales de Gaston Julia y, en 1980, obtuvo la imagen de un fractal en una computadora, que puede ser ampliado muchas veces y en cada reproducción sucesiva repetir el patrón del fractal. Fue así como nació el Conjunto de Mandelbrot, que se graficó en un plano complejo.

El avance en la teoría de los fractales contribuyó de manera significativa al análisis de las propiedades mecánicas, físicas y químicas de las superficies fracturadas de los materiales como polipropileno semicristalino y poliestireno amorfo, entre otros, que ahora se estudian en la ingeniería de materiales.


Escrito por Romeo Pérez

Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.


Notas relacionadas

¿Es posible encontrar la cuadratura de una figura geométrica? la respuesta en este texto. La cuadratura de una figura geométrica consiste en encontrar exactamente su área en un cuadrado.

Ante el descenso de temperaturas, los seres humanos se las han ingeniado para no pasar frío y continuar con sus actividades normales, pero qué pasa con los animales, ¿cómo sobreviven a las temperaturas bajas extremas? Te cuento.

China espera convertirse en la tercera nación en lograr esta hazaña, que requiere un operativo extremadamente complejo.

Serán visibles en todo el hemisferio norte y sus meteoros podrán superar los 50 kilómetros por segundo.

En el ámbito de la astronomía, Galileo no solo confirmó que la Tierra se movía en torno al Sol y se burló de los inquisidores del Santo Oficio.

El estudio de Venus en la década de 1960 alertó a la comunidad científica sobre las consecuencias ambientales por el aumento de dióxido de carbono (CO2) en la atmósfera terrestre.

La luminiscencia se encuentra, entre otro organismos, en estrellas de mar, tiburones y los dinoflagelados que, al emitir luz, hacen que el mar se llene de vida con olas brillantes, proyectando luz a lo largo de las costas.

En este artículo sarás por qué es tan importante saber respirar bien cuando realizas algún tipo de ejercicio físico.

Generaciones nacen inmersas en las redes, mismas que onstituyen la forma predominante de relacionarse con los otros. Algunos factores que propician el ciberacoso son: la viralidad, la rapidez de propagación de las publicaciones y el anonimato del agresor.

Es posible crear una matemática filosófica desde el hacer de un matemático que sea realmente relevante y visionaria. Debe de ser una reflexión humanizante, pero a la vez esclarecedora del mundo de las ideas formales.

¿Por qué algunas personas pueden comprender más fácil el formalismo matemático? ¿Por qué les fluyen ideas matemáticas con mayor facilidad que a otras? Esta increíble mente perteneció a uno de los más enigmáticos en la Historia de la Matemática.

Para describir el comportamiento de los fenómenos físicos, biológicos, químicos, sociales o económicos, el hombre recurre, en la mayoría de los casos, a modelos matemáticos para ayudarse a resolver dos tipos de problemas.

Marx incluyó en su obra El Capital las características de la agricultura capitalista, la cual extraía más nutrientes del suelo de los que le devolvía, dejando a las tierras infértiles.

La realidad es más compleja de lo que la ciencia sabe de ella y nos damos cuenta.

El grupo, compuesto por 34 estudiantes de las carreras de Autotrónica, Mecatrónica y Electrónica Industrial, visitan la NASA.