Cargando, por favor espere...
La naturaleza es compleja y se manifiesta de muchas formas. Uno de los instrumentos para estudiar dichas formas es la geometría, gracias a la que el ser humano se ha acercado mucho para comprenderlas mejor.
Nikolái Lobachevski, el gran geómetra ruso, defendía la premisa de que la geometría es en esencia movimiento, que se aprecia en el crecimiento de una planta, la distribución de los pétalos de las flores, la trayectoria de vuelo de un ave, el recorrido de un jabalí, etc. La ciencia actual ha dividido el estudio de estos movimientos en tres grandes campos de la matemática: la geometría euclidiana (plana), la lobachevskiana (hiperbólica) y la riemanniana (elíptica).
Sin embargo, estas ramas de la matemática no han podido describir de forma completa la diversidad de objetos y movimientos en la naturaleza. En tal caso se hallan las formas de la orilla de las hojas del helecho, del brócoli, las líneas costeras, las nubes, las montañas y muchos otros objetos que son complicados de describir con las geometrías existentes. Este problema hizo posible el surgimiento de un instrumento de esta ciencia conocida hoy como la geometría de los fractales, que se encarga de estudiar fenómenos y objetos fragmentados o fracturados que se repiten a escala mayor o menor, manteniendo una copia, casi exacta, de su estructura original.
Las irregularidades y patrones fragmentados presentes en la naturaleza fueron estudiados por primera vez por el matemático francés Henri Poincaré (1854-1912), cuando se encontró con los sistemas dinámicos. Posteriormente, el sueco Helge von Koch (1870-1924), en su artículo Acerca de una curva continua que no posee tangentes y que se obtiene por medio de los métodos de la geometría elemental, dio a conocer su resultado sobre el llamado “copo de nieve de Koch” o “estrella de Koch”, una curva infinita, continua y cerrada que encierra una superficie finita. La construcción se hace dividiendo cada lado de un triángulo equilátero en tres segmentos iguales, y sobre cada segmento central se construye otro triángulo equilátero (obteniendo al final una figura parecida a una estrella de David); y así sucesivamente hasta aproximarse a una figura similar a un copo de nieve.
El matemático polaco Waclaw Sierpínski (1882-1969) también trabajó en el tema de los fractales y es conocido por el triángulo que lleva su nombre, que consiste en dividir un triángulo en tres triángulos congruentes (iguales). Cada uno de esos triángulos, a su vez, se divide en otros tres triángulos congruentes, y así sucesivamente.
El francés Gaston Julia (1893-1978) fue otro de los matemáticos que hizo también contribuciones a la teoría de los fractales: generalizó esta teoría al plano complejo y en éste construyó su conjunto, conocido como “Conjunto de Julia”, que se obtiene a partir de cualquier función compleja. La longitud de la figura formada por dicha función es infinita. Este resultado puede encontrarse en su trabajo Informe sobre la iteración de las funciones racionales, publicado en la revista francesa de matemáticas Journal de Mathématiques Pures et Appliquées.
Otro científico que incursionó en el tema fue el matemático y meteorólogo estadounidense Edward Lorenz (1917-2008), con las Órbitas caóticas o atractor caótico de Lorenz, acuñado en 1963, que no se trata más que de un sistema dinámico determinístico tridimensional no lineal presente en la atmósfera terrestre.
Sin embargo, fue el polaco Benoit Mandelbrot (1924-2010), quien sistematizó por primera vez la geometría de los fractales. Continuó con el estudio de las propiedades de los fractales de Gaston Julia y, en 1980, obtuvo la imagen de un fractal en una computadora, que puede ser ampliado muchas veces y en cada reproducción sucesiva repetir el patrón del fractal. Fue así como nació el Conjunto de Mandelbrot, que se graficó en un plano complejo.
El avance en la teoría de los fractales contribuyó de manera significativa al análisis de las propiedades mecánicas, físicas y químicas de las superficies fracturadas de los materiales como polipropileno semicristalino y poliestireno amorfo, entre otros, que ahora se estudian en la ingeniería de materiales.
Para que el deportista cumpla sus objetivos físicos debe considerar varias variables. Aquí explicamos la hipertrofia muscular, puesto que la población que realiza deporte casi siempre busca una buena imagen física.
Charles convence a su hija de que acepte los títulos al portador de una empresa “fantasma”, quien está controlada por Mossack y Fonseca
Científicos identificaron la existencia de campos magnéticos poderosos y ordenados que se despliegan en espiral desde el borde del agujero negro supermasivo conocido como Sagitario A* (Sgr A*).
Desde el punto de vista filosófico, D’Álembert era partidario de la unidad del saber, proponía el progreso de la humanidad a través del desarrollo de la ciencia, unificadas por una filosofía desprendida de los mitos y creencias transcendentales.
Monitorear la evolución del rendimiento deportivo de los atletas a lo largo de las fases de preparación para una competencia es un tema que ha tomado relevancia en los últimos años, sin embargo, no todos los deportistas tienen las herramientas necesarias para realizarla con eficacia.
Generaciones nacen inmersas en las redes, mismas que onstituyen la forma predominante de relacionarse con los otros. Algunos factores que propician el ciberacoso son: la viralidad, la rapidez de propagación de las publicaciones y el anonimato del agresor.
Las redes sociales como Facebook, buscan que los seres humanos busquen “ser aceptados”, “ser populares”, “ser famosos” pero sin tener actos valiosos para la sociedad.
La tortilla es rica en probióticos y prebióticos, y no contiene conservadores artificiales, lo que mejora su sabor.
En este artículo defenderemos, desde la dimensión antropológica de la matemática, una de las afirmaciones que han concitado discusiones entre matemáticos y filósofos.
Las guerras biológicas permiten combatir a los enemigos sin confrontarse físicamente y han sido practicadas a lo largo de la historia. Los primeros usos de agentes biológicos se remontan a tres mil 500 años.
La tenacidad en su trabajo le acompañó hasta una edad muy avanzada.
Para aprovechar el petróleo crudo, éste debe someterse a un proceso de destilación fraccionada para separar sus diferentes componentes, dependiendo del tamaño de las moléculas y de sus puntos de ebullición (temperatura a la cual un líquido pasa a fase gas
Pocas son las mujeres que han obtenido frutos tan importantes en las matemáticas a la par de muchos hombres. Es el caso de Ada Lovelace, a ella se reconoce como la pionera de la programación de la máquina analítica.
A pesar del indiscutible rol que juegan los bosques, cada año disminuye su superficie debido al cambio de uso de suelo, tala clandestina e incendios forestales. De 2000 a 2018 se perdieron 13 mil 777 hectáreas.
La revista National Geographic refiere que sí existe la posibilidad de que haya agua en el núcleo de la Tierra y presume que dicho líquido podría ser "la causa de la misteriosa capa cristalina" que lo rodea.
Irán toma represalias; bombardea bases militares de EE.UU.
Israel ataca a Irán y pone en peligro al mundo
Parlamento de Irán pide cerrar el estrecho de Ormuz
Irán, Trump y Ormuz: el petróleo como rehén geopolítico
Naucalpan contradice a Conagua sobre desbordamiento de la Presa Los Cuartos
Balean a jefe de policía en alcaldía Cuauhtémoc
Escrito por Romeo Pérez
Doctor en Física y Matemáticas por la Facultad de Mecánica y Matemáticas de la Universidad Estatal de Lomonosov, de Moscú, Rusia.